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Abstract

This thesis deals with the investigation of solitary wave solutions of generalized non-

linear Schrödinger equations. In the second chapter, after a brief introduction to

solitary waves and negative index materials (NIMs), we discuss the probability of

pulse propagation in terms of solitary waves for NIMs. We present a detailed analy-

sis for the existence of dark and bright solitary waves and also fractional-transform

solutions in a nonlinear Schrödinger equation model for competing cubicquintic and

higher-order nonlinearities with dispersive permittivity and permeability. We delin-

eate parameter domains in which these ultrashort optical pulses exist in NIMs. For

example, dark solitons exist for the case of normal second-order dispersion, anoma-

lous third-order dispersion, self-focusing Kerr nonlinearity, and non-Kerr nonlineari-

ties, while the bright solitons exist for the case of anomalous second-order dispersion,

normal third-order dispersion, self-focusing Kerr nonlinearity, and non-Kerr nonlin-

earities. This is contrary to the situation in ordinary materials. In the second part

of this chapter, we obtain travelling wave solutions for pulse propagation in NIMs in

presence of external source, however the higher order effects like quintic nonlinearity

and self-steepening are not considered in this case. The solutions are necessarily of

fractional type containing trigonometric and hyperbolic functions. The last part of

this chapter contains the investigations carried out for the existence of bright, dark

solitons and periodic solutions for the coupled generalized nonlinear Schrödinger

equation governing the pulse propagation in NIMs. We observe that, depending

upon nature of dispersion, all travelling waves propagate with specific value of ve-

locity and initial chirp. For the normal dispersion, the propagating solitons restrict

to a unique velocity. On the other hand for the anomalous dispersion, velocity

belong to a specific domain. In the anomalous dispersion, NIMs also allows the

propagation of nonlinear periodic waves through them. We obtain expressions for

nonlinear chirp associated with each of these waves.

In the third chapter, we investigate modulational instability (MI) in twin-core

optical fibers (TCF), with a Kerr and non-Kerr polarizations based on a (3+1)-

dimensional coupled nonlinear Schrödinger equations in the presence of coupling

coefficient dispersion (CCD) and other higher order effects such as third order disper-

sion (TOD), fourth order dispersion (FOD), and self-steepening (SS). By employing

a standard linear stability analysis, we obtain analytically, the explicit expression

for the MI growth rate as a function of spatial and temporal frequencies of the

perturbation and the material response time. We explicate three different types of
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modulational instabilities— spatial, temporal, and spatio-temporal MI, and empha-

size that the earlier studies on MI in TCF do not account for this physics. Despite

the fact that the MI growth rate in these three different types of MI is impervi-

ous to TOD, the presence of quintic nonlinearity, CCD, FOD, and SS enhances

the formation of MI sidebands, both in anomalous as well as normal dispersion

regimes. For example, the spatial MI gain is directly proportional to the strength

of quintic nonlinearity, while the temporal MI gain crucially depends on strength

of quintic nonlinearity, FOD, CCD, and SS terms. We observe that for the case of

focusing medium with anomalous dispersion, as the strength of quintic nonlinearity

decreases, MI growth rate increases, and the MI gain reaches its optimum value and

the pulse breaks-up into a train of ultrashort pulses. Thirdly, the spatio-temporal

MI can occur for focusing medium in the normal dispersion regime with an enhanced

formation of sidebands, while for the defocusing nonlinearity and anomalous disper-

sion, there is a suppression of generation of MI sidebands. To sum up, we affirm

that all these additional terms provide extra freedom to control the amplitude of

the MI gain profile.

In the last chapter, we study the existence of solitary wave solution and mod-

ulational instability for a class of nonlinear Schrödinger equations. In first section

of this chapter, we present bright and dark optical solitons induced by the non-Kerr

terms in generalized nonlinear Schrödinger equation. The reported solutions consist

of various soliton-like solutions including double-kink and algebraic solitons. These

solitons are of sub 10 femtosecond width and are helpful to increase the informa-

tion carrying capacity in order to make ultra-fast communication. In second sec-

tion, we study the Modulation instability for nonlinear Schrödinger equation phase

locked with an external source. We analyze the possibility of existence of MI for

self-focussing and self-defocussing nonlinearities for positive and negative value of

source term coefficient. We further investigate the impact of variation of nonlinear

coefficient and variation of source term coefficient on MI.
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Chapter 1

Introduction

A system is said to be nonlinear if its output is not linearly proportional to input;

on the basis of this definition, one can say that most of the systems in this universe

qualify to be nonlinear. The science which deals with nonlinear systems is known

as nonlinear science. In the past few decades, nonlinear science has emerged as

a tool to study all those complex natural phenomenon which cannot be studied

completely by linear science. It is not a new subject or branch of science, although

it delivers a whole set of fundamentally new ideas and surprising results. Nonlinear

science qualifies to be a revolution due to its wide scope and coverage because it find

applications in almost all branches of science such as plasma physics, hydrodynamics,

mechanics, biology, chemistry etc. Hence, due to feasibility of nonlinear science on

system of every scale, it is possible to study same nonlinear phenomena in very

distinct way, with the corresponding experimental tools.

The study of nonlinear system means to study the nonlinearity present in it.

Nonlinearity plays an important role in dynamics of various physical phenomena

[1, 2], such as in electronic circuits, laser physics, nonlinear mechanical vibrations,

population dynamics, astrophysics, plasma physics, chemical reactions, nonlinear

wave motions, heart beat, nonlinear diffusion, time-delay processes etc. Nonlinear-

ity in any system make the system more complex and it become very difficult to

study. A small disturbance induced in nonlinear system even by little variation

1
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in initial conditions can results into big difference in behavior in time evolution

of the system. Hence a nonlinear system exhibits a sensitive dependence on ini-

tial conditions. However, linear systems are generally gradual, smooth and regular,

common example of linear system are slowly flowing streams, engines working at

low power, slowly reacting chemicals, etc. Any system with large input generally

show nonlinear behavior. For example, the behavior of a spring is linear for small

displacement, but if the initial displacement is large the spring shows nonlinear be-

havior. In similar way, for small initial displacement simple pendulum behaves as

linear system however as the initial displacement become large enough, its motion

become nonlinear.

The nonlinear system which is to be studied is described by a nonlinear evolu-

tion equation (NLEE). These NLEE’s are having complex structures due to linear

and nonlinear effects. By solving NLEE for different parameter regime one can

analyze the behavior of system. To find the exact or approximate solution of the

NLEE is a challenging aspect of nonlinear dynamics. The mathematical tools like

Fourier and Laplace transform, Green’s function, superposition principle are ap-

plicable for linear systems only. However analytical solutions of NLEE may be

obtained by applications of several approximate methods such as inverse scattering

transform (IST), Painleve analysis, Darboux transformation, ansatz method, factor-

ization method. In recent times, the research in the field of finding exact solution

of NLEE have reached an advanced stage due to development of several mathemat-

ical software and due to advancement in high speed computing. There are a large

number of NLEEs such as reaction diffusion equation, KdV equation, sine Gordon

equation, nonlinear Schrödinger equation (NLSE) etc., studied widely in different

physical contexts. KdV equation is used to study the weakly dispersive system such

as blood pressure waves and internal waves in oceans. Sine Gordon equation is used

to study the properties of Josephson junctions, charge density waves, etc. Similarly,

NLSE plays a vital role in the study of nonlinear fiber optics, condensed matter

physics, plasma physics, etc. The study of exact solutions of NLEE’s such as soli-

tary waves and periodic solution plays a vital role in illustration of several natural
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phenomenon. This thesis involves the study of NLSE and its variants in contexts of

nonlinear optics.

1.1 Nonlinear Schrödinger equation and its

derivation

A nonlinear Schrödinger equation is an example of a nonlinear model which describes

wide class of nonlinear systems. It has been widely used to address the physical,

biological and engineering systems and found applications in fluid dynamics [3],

nonlinear optics [4], plasma physics [5, 6] etc. The general form of NLSE is given

by [7]

iψt = −1

2
ψzz + γ|ψ|2ψ. (1.1)

First term on the right hand side (RHS) is group velocity dispersion (GVD) term

and γ is the coefficient of cubic nonlinearity. The term on the left hand side (LHS)

represent the time evolution, t is time and z is space coordinate. The NLSE is one

of the most important NLEE. It plays an important role in theory of propagation

of the envelope of wave train in many dispersive physical phenomena in which no

dissipation occurs.

In dielectric media and in the absence of free charges or currents, Maxwell’s equations

are given as [8]

∇× E = −∂B
∂t
, (1.2)

∇×H =
∂ D

∂t
, (1.3)

∇.D = 0, (1.4)

∇.B = 0, (1.5)

where E and H are the electric and magnetic field vectors, respectively, and D

and B are electric and magnetic flux densities which arise in response to E and H

propagating inside the medium and are related to them through the constitutive
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relations given as

D = ϵ0E+P (1.6)

B = µ0H+M (1.7)

where P andM are the induced electric and magnetic polarization. µ0, ϵ0 are perme-

ability and permittivity of free space respectively. For nonmagnetic material M = 0,

Eqs. (1.2)- (1.5) can be used to obtain the wave equation for light propagation in

optical waveguides. Taking curl of Eq. (1.2) and using Eq. (1.3), Eq. (1.6) and Eq.

(1.7), one can eliminate B and D in favor of E and P and obtain

∇×∇× E = − 1

c2
∂2E

∂t2
− µ0

∂2P

∂t2
, (1.8)

where c is the speed of light in vacuum and the relation µ0ϵ0 = 1/c2 was used.

Far away from the resonance, polarization P is given by

P(r, t) = ϵ0(χ
(1)E+ χ(2) : EE+ χ(3) : EEE+ .......), (1.9)

with ϵ0 as the vacuum permittivity and χj is the j order susceptibility. Considering

only 3rd order nonlinear effect, polarization is therefore conveniently expressed as

sum of linear and nonlinear terms

P(r, t) = PL(r, t) +PNL(r, t). (1.10)

Using Eq. (1.10) and ∇.E = 0, and introducing the linear refractive index n2(ω) =

1 + χ(1), Eq. (1.8) can be written as

−∇2E(r, t) +
n2(ω)

c2
∂2E(r, t)

∂t2
= −µ0

∂2PNL(r, t)

∂t2
, (1.11)

This expression shows that the nonlinear polarization acts as a source term for the

driven wave equation. In absence of PNL, the radiation simply propagates as a free

wave with speed v = c/n.
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Most nonlinear effects are well described by this equation and can be related

to given χ(j) tensor. For instance, real part of χ(2) is responsible for second harmonic

generation (SHG) and real part of χ(3) is responsible for third harmonic generation,

self phase modulation (SPM), self focussing and four wave mixing. The imaginary

part of χ(3) is responsible for two photon absorption, Raman gain etc. Still higher

order effects are usually weak and can be neglected. In optics, all even orders of χ(j)

vanishes due to the inversion symmetry in the amorphous silica and hence significant

nonlinear contribution is from χ(3).

Linear PL and nonlinear polarization PNL are related to electric field as [9, 10,

11]

PL = ϵ0

∫ t

−∞
χ(1)E(r, t′)dt′, (1.12)

PNL(r, t) = ϵ0

∫ ∫ ∫ t

−∞
dt1

∫ t

−∞
dt2

∫ t

−∞
dt3χ

(3)(t−t1, t−t2, t−t3).E(r, t1)E(r, t2)E(r, t3),

(1.13)

where χ(3)(t, t1, t2, t3) is approximated by

χ(3)(t, t1, t2, t3) = χ(3)R(t− t1)δ(t− t2)δ(t− t3). (1.14)

Neglecting the nonlinear terms, Eq. (1.11) can be conveniently written in Fourier

space as

∇2E(r, ω) =
ω2

c2
n2(ω)E(r, ω). (1.15)

A superposition of plane wave is solution to this equation and since light is also

confined in the transverse dimensions of fiber, a linearly polarized solution must be

of the form

E(r, ω − ω0) = x̂F (x, y)A(z, ω − ω0)e
−i(β0z−ω0t), (1.16)

where F (x, y) is the transverse field distribution, A is slowly varying envelop, ω0

is a fast carrier frequency and β0 is the wave number corresponding to the central

frequency. A is normalized such that |A|2 represents the optical power. The prod-

uct of the independent transverse and longitudinal parts leads to two conditional

equations:
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(
∂2

∂x2
+

∂2

∂y2

)
F (x, y) + n2(ω)

ω2

c2
F (x, y) = β2F (x, y), (1.17)

2iβ0
∂A

∂z
+ 2β0(β − β0)A(z, ω) = 0, (1.18)

where the second derivative of slowly varying envelop has been neglected and the

approximation β2 − β2
0 = 2β0(β − β0) has been used. Both the conditions are

justified as long as △ω << ω. Eq. (1.17) is an eigen value equation, known as

scalar Helmholtz equation, and leads to condition of guided mode and their field

distribution F (x, y) in the fibers. β is the eigen value of transverse field distribution.

In the absence of nonlinear polarization, solution of Eq. (1.17) is superposition of

Bessel and Neumann functions and it can be shown that these can have confined

modes only for kn2
1 > β2 > kn2

2. There may be several β fulfilling the conditions

corresponding to multimode, which implies that more than one spatial distribution

of field is possible in the fiber. When Kerr nonlinearity is included in Eq. (1.11),

the effective refractive index n(ω) is modified by the weak nonlinear effect, ñ2 = ϵ =

1 + χ(1) + 3/4χ(3)|E|2. The change in ñ is small, so

ñ2 = (n+△n)2 = n2 + 2n△n, (1.19)

which enables us to solve Eq. (1.17) by first order perturbation method. First n2, is

used to find the field distribution F (x, y) and propagation parameter β. Then eigen

function F (x, y) are used to calculate the first order correction to the term β due to

the term 2n△n,

β̃(ω) = β(ω) +△β(ω). (1.20)

Unperturbed linear propagation constant is approximated by Taylor expansion

around central frequency ω0

β(ω) = β0 + β1(ω − ω0) +
1

2
β2(ω − ω0)

2 + ...... (1.21)

This expression is inserted in Eq. (1.18) and a Fourier transformation back to time

domain gives the following equation for time dependent slowly varying envelope.
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∂A

∂z
+
∑
n=1

βn
in−1

n!

∂nA

∂tn
= i△βA. (1.22)

∆β include the effect of fiber loss and nonlinearity and can be written as

∆β =
α

2
+ iγ(ω0)|ψ|2, (1.23)

where α represent the loss or gain coefficient. If we consider lossless materials then

on substituting Eq. (1.23) in Eq. (1.22), we obtain the resulting equation

i
∂A

∂z
= −β2

∂2A

∂t2
+ γ|A|2A. (1.24)

Interchanging z and t, we get resulting equation as Eq.(1.1), which is known as

nonlinear Schrödinger equation (NLSE). There are various variants of NLSE, the

structure of which depend upon the properties of the system under study.

1.1.1 Higher order nonlinear Schrödinger equation

(HNLSE)

In most of the applications, the Eq. (1.1) is well satisfied, but with technological

advances of creating shorter and shorter pulses with duration in the femto-second

range this equation is no longer valid. Indeed if a pulse contain a few oscillations of

the carrier wave, the hypothesis of a slowly varying amplitude has to be replaced with

a new approach which is required to describe the propagation of ultrashort pulses

in nonlinear media. One possibility is to consider the NLS equation with additional

higher-order dispersive and nonlinear terms [12, 13, 14]. Recently a new approach,

based on the fact that the pulse is broad in the Fourier space, was developed by

several authors [15, 16, 17, 18]. It lead to the higer-order NLSE (HNLSE) for

ultrashort pulses which can be written as

iψt +
1

2
ψxx + |ψ|2ψ + iϵ [ A ψxxx +B |ψ|2ψx + C ψ|ψ|2x ] = 0, (1.25)
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apart from the terms occurring in NLSE, it contain additional terms like third order

dispersion term (TOD) ψxxx, ψ|ψ|2x is responsible for Raman induced frequency

shift, |ψ|2ψx is self steepening (SS) term. A large number of research groups have

studied HNLSE in different parameter regime to obtain solitary wave like solutions

[19, 20, 21].

1.1.2 Nonlinear Schrödinger equation with source term

The general form of NLSE with source term is given by

iψt +
1

2
ψxx + g|ψ|2ψ + µψ = Kei(kx−ωt), (1.26)

where ψt is time evolution term, ψxx is GVD term, g is the coefficient of cubic

nonlinearity, µ is gain or loss term coefficient and K is source term coefficient.

Externally driven, NLSE with a source has been investigated in the context of a

variety of physical processes. It arises in the problem of Josephson junction [22],

twin-core fibers [23, 24, 25, 26], density waves [27] and a number of other problems.

1.1.3 Coupled Nonlinear Schrödinger equation

While deriving Eq. (1.24), we assumed that the polarization of the incident beam

is preserved during propagation. If the system is relaxed from this condition and

the coupling between the orthogonal polarization components is considered then the

governing equation becomes the coupled NLSE. The propagation of coupled modes

of light through nonlinear waveguide is modelled by coupled NLSE. In the simplest

form coupled NLSE is expressed as

iψ1t + c1ψ1xx + (2α|ψ1|2 + 2β|ψ2|2)ψ1 = 0 (1.27)

iψ2t + c2ψ2xx + (2γ|ψ2|2 + 2β|ψ1|2)ψ2 = 0. (1.28)
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here ψ1 and ψ2 are two components of polarization, r11 and r22 are coefficients of self

phase modulation (SPM) and r12 and r21 are coefficients of cross phase modulation

(XPM). This is the XPM coefficients that take care of the coupling between the

polarization modes. XPM always accompanies SPM and can also arise between two

optical fields of different wavelengths. This equation appears in the nonlinear optics

in several different contexts. For example this equation is used in the theoretical

analysis of various nonlinear effects in the model of metamaterials [28, 29], which

features a combination of negative dielectric permittivity and magnetic permeability

and gives rise to negative refractive index. It promises a number of applications that

are impossible in ordinary optical media. For example- super–lensing, describe left

handed wave guide, negative refraction at optical frequency.

1.1.4 Nonlinear Schrödinger equation with distributive co-

efficients

NLSE and HNLSE with constant coefficients describes an idealized system. But

most of systems are inhomogeneous in nature e.g. optical fiber with nonuniform di-

ameter [30, 31, 32], Bose-Einstein condensates (BECs) [33, 34] and plasma physics

[35, 36, 37] etc. Therefore, Eq. (1.24) and Eq. (1.25) with variable coefficients can

be a more realistic approach for study of such systems. In the context of nonlin-

ear optics, the coefficients of NLSE are space dependent and we call the system as

inhomogeneous system and the governing equation is the inhomogeneous NLSE or

generalized NLSE (GNLSE). In the context of BECs, the coefficients of NLSE are

time dependent and we call the system as nonautomous system, where time appears

explicitly and the governing equation is the nonautonomous NLSE. A general form

of NLSE with distributive coefficients is given by

iψt +
1

2
ψzz + g(z)|ψ|2ψ + µ(z)ψ = 0. (1.29)

In above equation nonlinearity and gain are space dependent. Such an approach has

vital applications in various fields of engineering and sciences. Recently a number
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of researchers have studied this equation and have obtained solitary wave solutions

[31, 38, 39]

Hence we have seen that NLSE and its variants are used to describe various

systems such as BECs, dynamics of rotating fluid, pulse propagation in optical

fiber, pulse propagation in negative refractive index materials etc. Our focus is on

the study of pulse propagation in ordinary materials and negative index materials,

which is modelled by NLSE and its various variants.

GNLSE have large number of solutions however we are here interested in lo-

calized solutions.

1.2 Solitary waves and solitons

1.2.1 Solitary wave

In some media, such as layer of water or an optical fiber, under suitable conditions

the widening of wavepacket due to dispersion could be balanced exactly by narrowing

effect of nonlinearity of medium. In these cases, it is possible to have localized waves,

propagating with constant velocity and undistorted shape, often known as solitary

waves.

1.2.2 Solitons

Solitons are those solitary waves which retain their individuality under collisions

and eventually travel with their original shapes and speeds.

This property looks like interaction between free particles. Due to this particle

nature of solitary waves, they are named as ‘Solitons’. This property is illustrated

in Fig. 1.1. The solitons are mainly of two types i.e. bright and dark solitons. The

solitons pulse, intensity of which is larger than the background is known as bright

solitons, as shown in Fig. (1.2). The soliton with lower intensity than background

is known as dark solitons. The evolution of dark soliton is shown in Fig. (1.3).
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Figure 1.1: Collision of solitary waves

-5 0 5 10x 0.0

0.5

1.0

1.5
2.0

z
0.0

0.5

1.0

1.5

ΨHz,xL

Figure 1.2: Evolution of bright soliton.

1.2.3 Historical background

The solitary wave were first observed in 1834 by J. Scott Russel during his experi-

ment on efficient design of canal boat [40]. During experiment he saw a long water

wave propagating without change in shape. He named this wave as “Great Wave”

of translation or “Solitary Wave” and performed further investigations to study the

nature of this wave. The speed of such wave is given by

c =
√
g(h+ a), (1.30)
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Figure 1.3: Evolution of dark soliton.

where g is acceleration due to gravity, h is depth of water channel, a is maximum

amplitude of solitary wave. He published this work in the British Association in 1844

with the name Report on Waves. His description of solitary waves contradicted the

theories of water waves according to G. B. Airy and G. G. Stokes; they raised

questions on the existence of Russells solitary waves and conjectured that such

waves cannot propagate in a liquid medium without a change of form. Despite

the mathematical theory, the experimental evidence in favor of solitary waves was

convincing. It was not until the 1870s that Russells prediction was finally and

independently confirmed by both J. Boussinesq in 1871 and Lord Rayleigh in 1876.

In 1895, D. J. Korteweg and G. de Veries formulated a mathematical model

for solitary wave known as KdV equation, which can be express as

ψt + ψψx + δψxxx = 0, (1.31)

where ψ is amplitude of wave having functional dependence on space x and time t

coordinate, second term is nonlinear term and δ is the coefficient of nonlinear term

Dispersive term is responsible for the broadning of pulse while nonlinear term

leads to the steepening effect. In 1965, Zabusky and Kruskal [41] solved the KdV
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equation numerically as a model for nonlinear lattice and found that solitary wave

solutions interacted elastically with each other. Due to this particle-like property,

they termed these solitary wave solutions as solitons. When nonlinearity is balanced

by dispersion then waveform take the shape of permanent form known as soliton.

This research work attracted the attention of large number of research groups all

over the world and hence soliton concept was widely accepted. With the acceptance

of concept of solitons, a lot of research work was undergone to obtain the soliton

solutions which leads to development of several mathematical methods. Gardener

et al. reported the existence of multi-soliton solutions of KdV equation by using

inverse scattering transform (IST) [42]. Lax generalized these results and proposed

the concept of Lax pair [43]. In 1971 Zakharov and Shabat [44] showed that the

method worked for another physically significant NLEE, the NLSE, which is the

underlying mechanism for the BenjaminFeir instability in water waves. Hirota [45]

introduced a new method, known as Hirota direct method, to solve the KdV equation

for exact solutions for multiple collision of solitons. Then in 1974 Ablowitz et al.

[46] showed how those techniques could be used to solve a wide class of NLEE. Since

then the theory of solitons has blossomed into a rich and diverse field.

1.2.4 Properties of solitary waves

• The waves are stable, and can travel over very large distances without change

in shape and size.

• The speed of the wave depends on the size of the wave, and its width depends

on the depth of channel.

• Solitary waves do not survive collisions.
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1.2.5 Applications of solitary wave and solitons

Fiber optics

An optical soliton can propagate without distortion over long distances. This fea-

ture of optical soliton helpful in high speed communication through an optical fiber

[47]. Apart from the field of communications, solitons also find application soli-

ton photonic switches [48], logic gates [49], fiber laser [50], timing jitter [51], pulse

compression [52] and pulse amplification [53].

Bose-Einstein condensates (BECs)

At very low temperatures, particles in a dilute Bose gas can occupy the same quan-

tum (ground) state, forming a BEC. This phenomenon was first predicted by Bose

and Einstein in 1924. It is a coherent cloud of atoms which appears as a sharp

peak in both position and momentum space. In 1995, BECs were realized experi-

mentally when atoms of dilute alkali vapors were confined in a magnetic trap and

cooled down to extremely low temperature, of the scale of fractions of microkelvins

[54, 55]. The macroscopic dynamics of BECs near zero temperature is modeled by

an NLSE type equation, known as the Gross-Pitaevskii (GP) equation. This equa-

tion contain nonlinear term which arises due to the interatomic interactions which

describes the existence of nonlinear waves, such as solitons and vortices. Hence,

these matter-wave solitons can be viewed as nonlinear excitations of BECs [56].

Fluid dynamics

Solitary wave was first noticed and studied by Russell, which was shallow water-wave

soliton. The shallow water wave soliton is modelled by KdV equation. Solitary waves

also arise in deep water, as shown by the pioneering work of Vladimir Zakharov [57]

in 1968. Hence solitons find application in the study of various problems of fluid

dynamics. For instance, recently large number of research groups have attempted

to explain the large and seemingly spontaneous freak waves [3] or rogue waves as
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solitary waves. Additionally, tidal bores have been explained in terms of dispersive

shock waves, which consist of a front followed by a train of solitary waves.

Biophysics

There have been some attempts to use solitary-wave descriptions to describe various

biophysical phenomena. One example is the Davydov soliton, which satisfies an

equation that was designed to model energy transfer in hydrogen-bonded spines that

stabilize protein α-helices [58]. The Davydov soliton represents a state composed of

an excitation of amide-I and its associated hydrogen-bond distortion. It has been

used to describe a local conformational change of the DNA α-helix. Solitary waves

also find application the various studies related to DNA molecule [59].

Josephson junctions

A Josephson junction is a nonlinear oscillator consisting of two weakly coupled su-

perconductors that are connected by a non-conducting barrier. Such junctions might

prove to be important for producing quantum-mechanical circuits such as super con-

ducting quantum interference devices (SQUIDs). Solitons also find application in

the study of Josephson junctions because various intrinsic localized mode emerge in

the study of such devices [60, 61].

Plasma Physics

Plasma consists of large number of charged ions. In perturbation of charge den-

sity, the local ion density can be studied by using KdV equation and Kadomtsev-

Petviashvili (KP) equation. These equations admits soliton solutions. Soliton con-

cept penetrated into plasma physics in the late 50s. Later on number of researchers

showed interest in study of soliton solutions for plasmas [62, 63]
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Field Theory

Solitons are also important in the study of both classical and quantum field theory

[64]. Topological solitons such as monopoles, kinks, vortices, and skyrmions are key

to the modern understanding of field theory. In (1+1)-dimensional quantum field

theory, topological soliton solutions of the sine-Gordon equation can be mapped to

elementary excitations of an exactly solvable quantum field theory. This provides

a toy model for more physically relevant examples in which, the role of solitons is

played by magnetic monopoles which can be mapped to electrically charged elemen-

tary particles via an equivalence that is given the name strong-weak duality or, more

commonly, S-duality. S-duality is also an essential feature of string theory.

1.3 Other localized solutions

Since the discovery of solitary wave and solitons, a number of localized pulses have

been discovered in one dimensions as well as in multiple spatial dimensions. These

pulses are considered as similar to solitary wave although they don’t have interaction

properties similar to solitons. Some of the prominent examples of these pulses are

discussed below:

1.3.1 Gap solitons

Solitary waves that occur in finite gaps in the spectrum of continuous systems are

known as gap solitons. Optical gap solitons are refers to nonlinear waves propagating

in optical fibers whose linear refractive index has a periodic variation. The gap

solitons have been studied for NLSE equations with spatially periodic potentials

and have been observed experimentally in the context of both nonlinear optics [65]

and Bose-Einstein condensation [66].
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1.3.2 Breathers

A breather is a nonlinear wave in which energy concentrates in a localized and

oscillatory fashion as shown in Fig. (1.4). The term breather originates from the
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Figure 1.4: Breather soliton.

characteristic that most breathers are localized in space and oscillate (breathe) in

time. Breathers are extremely spatially-localized, time-periodic, stable or very long-

lived excitations in spatially extended, discrete, periodic or quasi-periodic systems

[67, 68]. These solutions increase their amplitude either exponentially or according

to power law in time t. Breathers achieve their maximum amplitude and finally decay

symmetrically to disappear forever. For NLSE there are two types of breathers.

(1) Ma soliton/ Breather [69] (2) Akhmediev Breather [70]

1.3.3 Kink solitons

Kink-solitons is one-dimensional topological solitary wave [71]. These represents a

twist in the value of a solution and causes a transition from one value to another.

The plot of kink-soliton is as shown in Fig. (1.5).
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Figure 1.5: Kink soliton

1.3.4 Rogue waves

Rogue waves are relatively large and spontaneous ocean surface waves that occur far

out at sea, and are a threat even to large ships [72]. Therefore these waves are also

known as freak waves, monster waves, killer waves, extreme waves, and abnormal

waves. The defining characteristic of these waves is that they appear from nowhere

and disappear without trace. An image of plot of rouge wave is as shown in Fig.

(1.6). Rogue waves are unusually steep waves, with the amplitude approximately

three times that of background (average wave crest). These were first recorded in

1994, in the north sea. Rogue waves seem not to have a single distinct cause, but

occur where physical factors such as high winds and strong currents cause waves to

merge to create a single exceptionally large wave.

1.4 Negative refractive index materials (NIMs)

In optics, the refractive index of a material is conventionally taken to be a measure of

the optical density and is defined as n = c
v
, where c is the speed of light in vacuum

and v is the speed of an electromagnetic plane wave in the medium. From Maxwell’s

equations the refractive index is given by the Maxwell relation, n = +√µϵ where ϵ
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Figure 1.6: Rogue wave

is the relative dielectric permittivity and µ is the relative magnetic permeability of

the medium. Usual optical materials have a positive ϵ, µ and n could easily be taken

as
√
ϵµ without any problems. Although it was realized that the refractive index

would have to be a complex quantity to account for absorption and even a tensor to

describe anisotropic materials, the question of the sign of the refractive index never

assumed significance. In 1967, Veselago [73] first considered the case of a medium

that had both negative dielectric permittivity and negative magnetic permeability at

a given frequency and concluded that the medium should then be considered to have

a negative refractive index. However this result remained an academic curiosity for a

long time due to unavailability of naturally occurring materials with simultaneously

negative ϵ and µ. However, in the last few years, theoretical proposals [74, 75] for

structured photonic media, whose ϵ and µ could become negative in certain frequency

ranges were developed experimentally [76, 77] and this has brought Veselago’s result

into the limelight. The striking demonstration by Pendry [78] that NIMs can be used

to make perfect lenses with resolution capabilities not limited by the conventional

diffraction limit has provided an enormous boost to the interest in NIMs. This field

has become a hot topic of scientific research and debate over the past few years.
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1.4.1 Properties of NIMs

Electromagnetic properties of NIMs

(a) Left handed system:-

Electrodynamics of NIMs can be explained by considering Maxwell’s equations.

∇⃗ × E⃗ = −1

c

∂B⃗

∂t
, (1.32)

and

∇⃗ × H⃗ = −1

c

∂D⃗

∂t
, (1.33)

for uniform plane wave E⃗ = E⃗0e
(ωt−Kx) and B⃗ = B⃗0e

(ωt−Kx), where E⃗0 and B⃗0

are initial amplitude of electric field and magnetic field respectively. ω is angular

frequency and K is propagation vector. On substituting E and B in Eq. (1.32) and

in Eq. (1.33), we obtain

K⃗ × E⃗ = ωµH⃗, (1.34)

and

K⃗ × H⃗ = ωϵE⃗. (1.35)

It is clear from Eq. (1.34) and Eq. (1.35) that propagation of wave through a

material depends upon the sign of ϵ and µ. The behavior of electromagnetic wave

for various possibilities of sign of ϵ and µ is as shown in Fig. (1.7). For positive

ϵ and µ the K⃗, E⃗, H⃗ form a right handed system (RHS) as shown in Fig. 1.8(a).

However if µ and ϵ are simultaneously negative then K⃗, E⃗, H⃗ form the left handed

system (LHS) as shown in Fig. 1.8(b). Hence due to this property these materials

are also known as left handed materials (LHM).

(b) Negative phase velocity:-

We know phase velocity of a wave is the velocity of wave fronts having constant
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Figure 1.7: Classification of materials based upon propagation of wave

Figure 1.8: (a) Right handed system and (b) Left handed system.

phase. The phase velocity for a wave is given by

v =
ω

k
, (1.36)

for LHM k is negative this will lead to negative value of v, which shows that in NIMs

phase velocity of the propagating wave is negative.

(c) Backward wave propagation:-

We also know for any wave the time averaged flux of energy is determined by

Poynting vector.

P⃗ =
1

2
(E⃗ × H⃗). (1.37)
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P⃗ always points in the direction of group velocity of wave which is the velocity of

propagation of the envelope of the wave packet. Hence in NIMs group velocity of

wave is always positive. P⃗ is positive in both LHM and RHM. Therefore in LHM

the Group velocity and Phase velocity always points in opposite directions which is

shown in Fig. 1.9, hence it shows that there is backward wave propagation in NIMs.

Figure 1.9: Wave velocity and group velocity in NIMs

Optical properties of NIMs

(a) Negative refraction:-

We know that snell’s law describes bending of light when it moves from one

medium to other. It states that the ray of light bends towards the normal when it

enters from rearer to the denser medium, however it bends away from the normal

when it enters from denser to the rearer medium. To describe negative refraction

or inverse snell’s law, let us consider the refraction of a ray at the interface of two

media one of which is RHM and second is LHM. Let n1 is refractive index of RHM
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and n2 is refractive index of LHM, then according to Snell’s Law

sinθ1
sinθ2

=
−n2

n1

, (1.38)

n1sinθ1 = −n2sinθ2, (1.39)

n1sinθ1 = n2sin(−θ2). (1.40)

The relation shows that after refraction there is bending of ray on negative side

of normal. This explains the negative refraction in NIMs. Fig. 1.10 shows both

positive and negative refraction

Figure 1.10: Positive refraction in ordinary materials and negative refraction in

NIMs

(b) Convex and concave lens:-

In NIMs the roles of convex and concave lens are interchanged. The convex

lens become diverging in nature and concave lens become converging in nature. This

feature of NIMs is as shown in Fig. 1.11.

(c) Inverse doppler effect:-

We know in conventional doppler effect, the frequency of waves that are emitted

by a moving source increases when the source is moving towards the observer and

decreases when the source is moving away from the observer. The conventional
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Figure 1.11: Convex and concave lense in NIM’s

doppler effect is shown in Fig. 1.12(a). However in 1968 soviet physicist Victor

Veselago [73] predicted that electromagnetic waves travelling through materials with

a negative permittivity and a negative permeability would do the opposite. The

frequency should drop for a source moving towards an observer and increase for a

source moving away from the observer. The reverse doppler effect is as shown in

Fig. 1.12(b). Reverse doppler effect occurs because the magnitude of the doppler

effect is proportional to the refractive index of the medium through which the wave

propagate. The refractive index of all the materials is positive however for NIMs

refractive index is negative.

f = f0

(√
1 + β

1− β

)
, (1.41)

where β = v
c
, v is relative velocity of the source and observer and c is velocity of

light.

(d) High resolution:-

The diffraction limit is an inherent limit in conventional optical devices or

lenses beyond which resolution is not possible. NIMs are having resolution beyong
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Figure 1.12: (a) Doppler effect in a right-handed substance (n > 0) (b) Doppler

effect in a left handed substance (n < 0).

the diffraction limit. This property of NIMs can be useful in making superlenses.

1.4.2 Applications of NIMs

NIMs are under consideration for many applications. Some of the potential future

applications are as discussed below

Antennas

NIMs can be used to design highly domesticated and efficient antennas. Due to

negative magnetic permeability NIMs can be used to make antennas small in size,
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having high directivity and tunable operational frequency. NIMs are also helpful in

enhancing radiated power of antenna.

Absorber

An absorber is a type of device which can efficiently absorb electromagnetic radia-

tion such as light. NIMs utilizes the effective medium design and loss components

of electric permittivity and magnetic permeability to create a material that has a

high ratio of electromagnetic radiation absorption. The metamaterial absorber find

applications in solar phovoltaic, photonic metamaterials, antenna systems etc.

Superlens

Most interesting property of NIMs is that, these materials could lead to the creation

of a superlens [78]. Such a lens would image objects with details smaller than that

wavelength of light used. Ordinary lenses with positive refractive indices, are only

able to capture details of the object at the size of the wavelength of the light used

or larger. The superlens on the other hand is capable of capturing the finest detail

(smaller than the wavelength of light used) of the object.

Cloaking devices

NIMs can direct and control the propagation and transmission of specified parts

of the light spectrum and demonstrate the potential to render an object seemingly

invisible. This property of NIMs can be used to design invisible cloaking device. This

device is based on transformation optics, which describes the process of shielding

something from view by controlling electromagnetic radiation.

Seismic metamaterials

NIMs can be used to design the materials which can counteract the adverse effects

of seismic waves on artificial structure which exist on the surface of earth. We know
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that velocity of the seismic waves depends on density of the materials. The NIMs has

the ability to reduce the velocity of seismic wave and hence shorten its wavelength.

This property of NIMs would pass the wave around the building which is standing

on earth, so as to arrive in phase as earthquake wave.

Light and sound filtering

NIMs textured with nonoscale wrinkles could control the sound and light signal.

This property is useful in techniques like nondestructive material testing, medical

diagnostics and sound suppression.

1.4.3 Pulse propagation through NIMs

In electromagnetic properties of NIMs, it has been discussed that there is reverse

wave propagation through NIMs. This property has given the insight that wave

propagation is possible in NIMs. This has created a significant theocratical as well

as experimental interest, in the use of NIMs in optical communication systems. In

this context, study of nonlinear pulse propagation, particularly optical solitons is

new and exciting field of research [79, 80], because NIMs are artificially designed

materials, so we have flexibility of controlling the behavior of pulse propagation

through these materials. NIMs are composed of regular array of unit cells whose

size is usually much smaller than the wavelengths of propagating E. M. waves.

Therefore, NIMs may be considered as continuous and homogeneous according to

effective medium theory and may be described by dispersive permittivity ϵ(ω) and

dispersive permeability µ(ω). Due to difference in properties of NIMs and ordinary

materials, it was not an easy task to develop pulse propagation equation for NIMs. In

2005 Scalora et. al. considered dispersive nature of electrical permittivity ϵ(ω) and

magnetic permeability µ(ω), and modelled pulse propagation equation for NIMs.

This was a significant breakthrough in the field of pulse propagation through NIMs.
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The pulse propagation for NIMs is given by

∂E

∂Z
= i

k2
2

∂2E

∂t2
+k3

∂3E

∂t3
+iP3|E|2E−iP5|E|4E+S1

∂(|E|2E)
∂t

−iS2
∂2(|E|2E)

∂t2
(1.42)

where k2 is group velocity dispersion (GVD) coefficient, k3 is third order dispersion

(TOD) term, P3 and P5 are nonlinear term and S1 is self steepening (SS) coefficient

and S2 is second order nonlinear dispersion coefficient. This equation basically

describe the propagation of ultra short pulses in NIMs. This equation is known as

generalized nonlinear Schrödinger wave equation (GNLSE).

1.5 Outline of Thesis

The layout of the thesis is as follows.

Chapter 2 include the discussion about possibility of solitary waves and other

localized solutions in NIMs. This chapter is divided into three parts. We have dis-

cussed about the wave propagation in NIMs. In first section, we present periodic and

solitary waves propagating through NIMs. The NLSE containing higher order effects

like quintic nonlinearity, self-steepening and nonlinear dispersive terms governs the

pulse propagation through NIMs and we have explored dark and bright solitary wave

solutions for some constraints. We further studied fractional-transform solutions,

containing periodic, hyperbolic and cnoidal solitary wave solutions for GNLSE, in

absence of quintic and nonlinear dispersion terms. In second section, we have stud-

ied solitary wave solutions for NLSE containing an external source. In this case, we

have obtained the periodic and solitary wave solution again, by using ansatz method.

Third section deals with study of chirped pulses in NIMs. We have considered the

coupled pulse propagation equation in NIMs in the presence of electric and magnetic

self-steepening effects. In order to make the work self contained, we have sketched

the essential steps of derivation of coupled NLSE. We have obtained exact chirped

soliton and periodic solutions for normal as well as anomalous dispersion. For the

normal dispersion, we obtained the bright and dark soliton solutions having unique
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velocity but different initial chirp for same normalized frequency; on the other hand

for the anomalous dispersion, it possesses the fractional solutions having different

velocity for a particular normalized frequency. Moreover, there is also a possibility

of obtaining the periodic nonlinear waves in NIMs in anomalous dispersion regime.

We have plotted these solutions for different normalized frequencies. It is shown

that nonlinear chirp associated with each of these solutions is directly proportional

to the intensity of the pulse and saturates at some finite value as the retarded time

approaches its asymptotic value.

In Chapter 3, discussion begin with the introduction of modulation instabil-

ity (MI) and description about twin-core fiber (TCF). Later on pulse propagation

equation for TCF is introduced, which is a (3+1)-dimensional coupled NISE with

coupling coefficient dispersion (CCD) and other higher order effects such as third

order dispersion (TOD), fourth order dispersion (FOD), and self-steepening (SS).

By employing a standard linear stability analysis, we obtain analytically the explicit

expression for the MI growth rate as a function of spatial and temporal frequencies

of the perturbation and the material response time. We investigate three different

types of modulational instabilities— spatial, temporal, and spatio-temporal MI in

TCF in presence of higher order effects. Despite the fact that the effect of TOD on

MI growth rate in these three different types of MI is minimal, the presence of quin-

tic nonlinearity, CCD, FOD, and SS enhances the formation of MI sidebands, both

in anomalous as well as normal dispersion regimes. For the spatial case, we studied

the variation of MI gain with strength of quintic nonlinearity, while the temporal

MI gain crucially depends on strength of quintic nonlinearity, FOD, CCD, and SS

terms. So for temporal case we illustrated the impact of all the higher order terms

for focussing and defocussing case separately. Thirdly, the spatio-temporal MI has

been studied for focussing and defocussing regime.

Chapter 4 is divided into two parts. In first part, we studied the GNLSE with

non-Kerr terms, which is short wave equation. We demonstrated that the non-Kerr

terms induces different types of bright and dark solitons, which are subjected to

constraint relations among the parameters. The higher order terms are responsible
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for compensation of the nonlinear absorption when pulse propagate through highly

nonlinear media and play an important role for the post-soliton compression to get

stable compressed optical pulse. These femtosecond pulses are useful to increase the

capacity of carrying information in order to make ultra fast communication which

is useful for trans-continental and trans-ocean. In second part, we have investigated

the modulational instability for NLSE with source term by using linear stability

analysis. We have explored various regions where MI is possible. We have also

illustrated the variation of MI gain with source term coefficient for focussing as well

as for de-focussing nonlinearity.

In conclusion, Chapter 5 discusses the results obtained in the preceding chap-

ters and provides a summary of key findings.
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[50] B Oktem, C Ülgüdür, and F Ilday. Soliton–similariton fibre laser. Nature

Photonics, 4(5):307–311, 2010.

[51] M Suzuki, I Morita, N Edagawa, S Yamamoto, H Taga, and S Akiba. Reduction

of gordon-haus timing jitter by periodic dispersion compensation in soliton

transmission. Electronics Letters, 31(23):2027–2029, 1995.

[52] SV Chernikov, DJ Richardson, DN Payne, and EM Dianov. Soliton pulse

compression in dispersion-decreasing fiber. Optics Letters, 18(7):476–478, 1993.

[53] GP Agrawal. Amplification of ultrashort solitons in erbium-doped fiber ampli-

fiers. IEEE Photonics technology letters, 2(12):875–877, 1990.

[54] MH Anderson, JR Ensher, MR Matthews, CE Wieman, and EA Cornell. Ob-

servation of Bose–Einstein condensation in a dilute atomic vapor. Science,

269(5221):198–201, 1995.



36 BIBLIOGRAPHY

[55] KB Davis, MO Mewes, MR Van Andrews, NJ Van Druten, DS Durfee,

DM Kurn, and W Ketterle. Bose-Einstein condensation in a gas of sodium

atoms. Physical Review Letters, 75(22):3969–3973, 1995.
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Chapter 2

Solitary wave solutions in negative

index materials

2.1 Introduction

In this chapter, we discuss about NIMs, and also investigate the possibility of soliton-

like solutions in NIMs. This chapter is divided into three sections. In first section,

we present a detailed analysis for the existence of dark, bright solitary waves and

fractional-transform solutions in a NLSE model for competing cubic-quintic and

higher-order nonlinearities with dispersive permittivity and permeability. Parameter

domains are delineated in which these ultrashort optical pulses exist in NIMs.

The second section is special case of section one. In this section, we consider

the same model equation in the presence of external source but the effects like quintic

nonlinearity and self-steepening are absent. For this model, we obtained travelling

wave solutions for pulse propagation in NIMs in the presence of external source. The

reported solutions are necessarily of the fractional-type containing trigonometric and

hyperbolic functions.

In third section, we investigate the existence of bright, dark solitons, and peri-

odic solutions for the coupled generalized nonlinear Schrödinger equation governing

the pulse propagation in NIMs. It is observed that depending upon nature of dis-

39
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persion different form of travelling wave propagate through NIMs for specific value

of velocity and initial chirp. We also obtained expressions for nonlinear chirp asso-

ciated with each of these solutions.

2.2 Background

As discussed in first chapter, the materials with simultaneously negative real parts

of the dielectric permittivity ϵ and magnetic permeability µ has negative refractive

index n [1]. We have know that NIMs are artificially designed and demonstrate

many peculiar properties due which these materials have attracted the attention of

large number of research groups. Recently various research groups have proposed

and studied different potential applications of NIMs [2, 3]. In this context, study of

nonlinear pulse propagation, particularly optical solitons is new and exciting field

of research [4, 5]. This is mainly due to the fact that apart from the richness of

physics, as NIMs are artificially structured materials, we might have flexibility of

controlling these pulses as per our requirement. Since there are many differences

between ordinary materials and NIMs, it was a complex task to derive pulse prop-

agation equation for NIMs. The first significant step in this direction was taken

by Scalora et al. [6]. They considered dispersive nature of electric permittivity ϵ,

magnetic permeability µ and developed GNLSE for NIMs without taking nonlin-

ear magnetization into account. After development of GNLSE for NIMs a lot of

progress has been made in study of pulse propagation, which also paved a way for

the effective fabrication of such materials. GNLSE was studied by various authors

in the context of pulse propagation [7, 8, 9]. Later on Lazarides and Tsironis de-

rived a system of coupled NLSE (CNLSE) for the propagating envelopes of electric

and magnetic fields in an homogeneous, isotropic, quasi-one-dimensional NIMs [10].

This model have been studied to explore the nonlinear properties of NIMs such as

modulation instability (MI) [11]. Since then a lot of development has taken place in

the study of NIMs. More recently, nonlinear effects in NIMs have been extensively

studied, including second-harmonic generation [12], parametric amplification [13],
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modulation instability [5], and soliton propagation [14, 15]. It is well known that

nonlinear NIMs not only possess dispersive magnetic permeability but also disper-

sive electric permittivity which leads to the difference between the dynamic models

for the envelopes of the electromagnetic wave in NIMs and in ordinary materials,

and support rich localized modes [14, 15]. These localized modes in nonlinear NIMs

can take the forms of gap solitons [14], spatial solitons [15], spatiotemporal solitons

[16, 10], and temporal solitons [17, 18]. In particular, small-amplitude dark and

bright solitons on the background of a continuous wave in NIMs have been obtained

by employing small-amplitude soliton approximation method [17]. Dark solitons

and their interactions in metamaterials have been studied by using a Korteweg-de

Vries description [18].

Motivated by these works and keeping into account various interesting features

of NIMs and their future applications, we investigate the soliton solutions for pulse

propagation through NIMs. We study the influence of quintic nonlinearity, self-

steepening coefficient, source term on soliton-like solutions. We further study the

solitary wave solutions and the corresponding chirping for each solution of coupled

NLSE’s.

2.3 Ultrashort pulse propagation in NIMs

2.3.1 Governing equation

NIMs have a regular periodic structure with unit cells having size much smaller

than the wavelengths of propagating electromagnetic (E. M.) waves. Therefore,

NIMs may be considered as continuous and homogeneous according to effective

medium theory, and may be described by dispersive permittivity ϵ(ω) and dispersive

permeability µ(ω). We consider the propagation of E. M. waves in an isotropic and

homogeneous NIMs whose ϵ(ω) and µ(ω) can be expanded in Taylor’s series [6] as

ωϵ(ω) =
∞∑
n=0

[
∂n[ωϵ(ω)]

∂ωn
|ω−ω0

(ω − ω0)
n

n!
], (2.1)
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and

ωµ(ω) =
∞∑
n=0

[
∂n[ωµ(ω)]

∂ωn
|ω−ω0

(ω − ω0)
n

n!
], (2.2)

where ω0 is carrier frequency of incident E. M. wave. Using above two expressions

in Maxwell’s equations, we get

∂Ex(z, t)

∂z
=
i

c
exp i(kz − ω0t)

∞∑
n=0

(
in
∂n[ωµ(ω)]

∂ωn
|ω−ω0

1

n!

∂nH(z, t)

∂tn

)
, (2.3)

and

∂Hy(z, t)

∂z
=
i

c
exp i(kz − ω0t)

∞∑
n=0

(
in
∂n[ωϵ(ω)]

∂ωn
|ω−ω0

1

n!

∂nE(z, t)

∂tn
− 1

c

∂Pnl(z, t)

∂t

)
,

(2.4)

where Ex(z, t) = E(z, t)ei(kz−ωt) and Hy(z, t) = H(z, t)ei(kz−ωt). E(z, t) and H(z, t)

are envelope of the electric and magnetic fields respectively. We know that in nonlin-

ear medium the polarization can be written as Pnl(z, t) = χ(3) |E|2E +χ(5) |E|5E +

......., where χ(n) is nth order nonlinear susceptibility. Eq. (2.3) and Eq. (2.4) are

general equations because these include dispersion effect to any desired level, but for

ultra short pulse we need dispersion effect up to third order so we can write above

two equations as

α
∂E

∂τ
+ i

α′

4π

∂2E

∂τ 2
− 1

6

α′′

4π2

∂3E

∂τ 3
= iβϵE − iβnH − ∂H

∂ξ
+ iβχ(3)|E|2E − χ(3)∂(|E|2E)

∂τ
,

(2.5)

γ
∂H

∂τ
+ i

γ′

4π

∂2H

∂τ 2
− 1

6

γ′′

4π2

∂3H

∂τ 3
= iβµH − iβnE − ∂E

∂ξ
, (2.6)

where

α = ∂[ω1ϵ(ω1)]
∂ω1

, α′ = ∂2[ω1ϵ(ω1)]
∂2ω1

, α′′ = ∂3[ω1ϵ(ω1)]
∂3ω1

, γ = ∂[ω1µ(ω1)]
∂ω1

γ′ = ∂2[ω1µ(ω1)]
∂2ω1

, γ′′ = ∂3[ω1µ(ω1)]
∂3ω1

, z = ξ
λp
, t = cτ

λp
,

β = 2πω1, ω1 = ω/ωp, Vg =
2n

(ϵγ+µα)
,

χ(3) and χ(5) are the third-order and fifth-order susceptibility respectively, which

comes due to nonlinear response of material medium during interaction of bound
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electrons when intense electric field is applied. λp is the corresponding wavelength.

Combining Eq. (2.5) and Eq. (2.6) and eliminating magnetic field, we obtain

∂E

∂ξ
+
ϵγ + µα

2n

∂E

∂τ
=

i

2βn

(
∂2E

∂ξ2
− αγ

∂2E

∂τ

)
+

i

8πβn

(
αγ′ + γα′ + β

ϵγ′′ + µα′′

6π

)
∂3E

∂τ3

+
iβµχ(3)

2n
|E|2E − (γ + µ)χ(3)

2n

∂(|E|2E)

∂τ
− i

ϵγ′ + µα′

8πn

∂2E

∂τ2

− iχ(3)

2βn

(
γ +

βγ′

4π

)
∂2(|E|2E)

∂τ2
. (2.7)

From Eq. (2.7), it is clear that the wave propagate at group velocity Vg = 2n/(ϵγ+

µα) in the unit of c. For transparent NIMs [6, 19], α > 0, γ > 0, and n < 0,

therefore, Vg is always positive. Introducing a retarded coordinate ∂/∂Z = ∂/∂ξ +

(1/Vg)(∂/∂τ), Eq. (2.7) can be written as

∂E

∂Z
=

i

2βn

(
1

V 2
g

− αγ − β
ϵγ′ + µα′

4π

)
∂2E

∂τ 2
+

i

8πβn

(
αγ′ + γα′ + β

ϵγ′′ + µα′′

6π

)
∂3E

∂τ 3

+
iβµχ(3)

2n
|E|2E +

i

2βn

(
∂2E

∂Z2
− 2

Vg

∂2E

∂Z∂τ

)
− (γ + µ)χ(3)

2n

∂(|E|2E)
∂τ

− iχ(3)

2βn

(
γ +

βγ′

4π

)
∂2(|E|2E)

∂τ 2
. (2.8)

Differentiating Eq. (2.8) with respect to Z and τ , respectively, and neglecting the

fourth-order linear derivative and third-order nonlinear temporal derivative [20], we

obtain ∂2E/∂Z2 and ∂2E/∂Z∂τ . Substituting ∂2E/∂Z2 and ∂2E/∂Z∂τ in Eq.

(2.8) and taking τ = t we obtain a generalized higher-order NLS equation.

∂E

∂Z
− iP ∂

2E

∂t2
−Q∂

3E

∂t3
− iγ|E|2E+ iR|E|4E−Λ

∂(|E|2E)
∂t

+ iS
∂2(|E|2E)

∂t2
= 0, (2.9)

where P is group velocity dispersion (GVD) coefficient, Q is third-order disper-

sion (TOD) coefficient, γ and R represent cubic and quintic nonlinear coefficients

respectively, Λ represents self-steepening (SS) coefficient and S represents second-

order nonlinear dispersive coefficient. All parameters discussed above are defined

as

P =
1

2βn

[
1

V 2
g

− αγ − β(αγ′ + µα′)/4π

]
,
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Q =
1

2βn

[
P

Vg
+ β(αγ′′ + µα′′)/24π2 + (αγ′ + µα′)/4π

]
,

γ =
βµχ(3)

2n
,

R =
βµ2(χ(3))2

8n3
,

Λ =
χ(3)

2n

[
µ

Vgn
− (γ + µ)

]
,

S =
µχ(3)

2n

[
P

4n
+

γ

µβ
+

γ′

4πµ

]
.

The variation of all above parameters with normalized frequency is depicted in

Fig. 2.1. Eq. (2.9) with linear and nonlinear higher-order effects describes the
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Figure 2.1: Curves of GVD, TOD, cubic nonlinearity, quintic nonlinearity, self-

steepening and second order nonlinear dispersive term versus normalized frequency

in focusing NIMs for ωm
ωp

= 0.8. Here, P is plotted in units of 1
c ωp

, Q in units of 1
c ω2

p
,

and γ, Λ, S are plotted in units of χ(3) and R in units of (χ(3))2. Here χ(3) = 10−10

(esu).

propagation of few cycle ultrashort pulses in NIMs. For inhomogeneous NIMs we can

take the distributive coefficients which could be a more realistic approach for study
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of NIMs. Recently Li et al. [8] have reported gray solitary wave solutions for this

equation. Also, Boardman et al. [21] have reported temporal solitons in magneto-

optic and metamaterial waveguides. Further neglecting the higher order effects

such as quintic nonlinearity and nonlinear dispersion then Eq. (2.9) will reduce to

equation discussed in ref. [22], which admits the bright and dark solitons. The Eq.

(2.9) is a model that is used to describe few cycle pulses. The model parameters

are related to ϵ and µ so one can easily analyze the effect of these parameters on

propagation of ultrashort pulses. As per Drude model [19], ϵ(ω1) = 1 − 1
ω1(ω1+iγe)

and µ(ω1) = 1− ω2
m/ω

2
p

ω1(ω1+iγm)
, where ω1 = ω/ωp, ωp and ωm are electric and magnetic

plasma frequencies. Also, γe = γm = 4.5×10−4 are electric and magnetic loss terms,

which result in low absorption [23, 24].

2.3.2 Solitary wave solutions

In order to find exact solitary wave solutions of Eq. (2.9), we have chosen the

following form for the complex envelope travelling wave solution

E(ξ, z) = α(ξ)ei(ψ(ξ)−kz), (2.10)

where ξ = ηt− uz is the travelling coordinate and α and ψ are real functions of ξ.

Substituting Eq. (2.10) into Eq. (2.9) and separating real and imaginary parts we

obtain

−uα′ + η2
P

2
αψ′′ + η2Pα′ψ′ −Qη3α′′′ + 3η3Qαψ′ψ′′ + 3η3Qα′(ψ′)2 − 3ηΛα2α′

− 6η2Sα2α′ψ′ − η2Sα3ψ′′ = 0, (2.11)

−uαψ′ − kα− P

2
η2α′′ +

P

2
η2α(ψ′)2 − 3Qη3α′ψ′′ − 3Qη3α′′ψ′ −Qη3αψ′′′

+ Qη3α(ψ′)3 − γα3 +Rα5 − Ληα3ψ′ + 6Sη2α(α′)2 + 3Sη2α2α′′

− Sη2α3(ψ′)2 = 0. (2.12)
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Assuming ψ′ = m (a constant) and substituting in Eq. (2.11) and Eq. (2.12), we

arrive at the coupled equations in α and ψ,

− uα′ +mη2Pα′ + 3m2η3Qα′ −Qη3α′′′ − 3ηΛα2α′ − 6mη2Sα2α′ = 0, (2.13)

−muα− kα− P

2
η2α′′ +

m2P

2
η2α− 3mQη3α′′ +m3Qη3α− γα3 +Rα5

−mΛηα3 + 6Sη2α(α′)2 + 3Sη2α2α′′ −m2Sη2α3 = 0. (2.14)

Integrating Eq. (2.13), we obtain

α′′ = aα+ bα3 + c1, (2.15)

where a = 3Qη3m2+Pη2m−u
Qη3

, b = −ηΛ+2η2Sm
Qη3

and c1 is a integration constant. Substi-

tuting Eq. (2.15) into the Eq. (2.14), and equating the coefficients of αi’s (i = 1, 3, 5)

to zero, we get a set of equations given as

− um− k +
P

2
η2(m2 − a)− 3Qη3ma+Qη3m3 + 6Sη2c2 = 0,

− P

2
η2b− 3Qη3mb− γ − Ληm+ 9Sη2a− Sη2m2 = 0,

R + 6η2Sb = 0. (2.16)

Here we have assumed c1 = 0 to avoid complex calculations. Solving these equations

consistently, we obtain the following relations

u = η

(
26Qν2

9
+

(
Q2R

18S2
+ P − QΛ

9S

)
ν − Qγ

9S
+
PQR

108S2

)
,

k = Qν3 +
P

2
ν2 − um+

(
6Sc2 − 3Qaν − P

2
a

)
η2,

and m =
ν

η
, (2.17)

for ν = QR
12S2 − Λ

2S
. Here c2 is a integration constant which arises upon integrating

the Eq. (2.15) as

(α′)2 = aα2 +
b

2
α4 + c2. (2.18)
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Eq. (2.18) is a well known first-order ordinary differential equation which can be

solved for dark and bright solitary wave solutions for different parametric conditions

[25].

Dark solitary wave

For a < 0, b > 0 and c2 = a2

2b
, Eq. (2.18) can be solved for dark solitary wave

solutions of the form

α(ξ) =

√
−a
b

tanh

(√
−a
2
ξ

)
. (2.19)

The complete solution for Eq. (2.9) reads

E(t, z) =

√
−a
b

tanh

(√
−a
2
ξ

)
ei(mξ−kz). (2.20)

The typical profile for normalized intensity of dark solitary wave solutions is depicted

in Fig. 2.3.
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Figure 2.2: Evolution of dark solitary waves for ωm
ωp

= 0.8. Here, intensity of

dark solitary wave is plotted in normalized form. The physical units of intensity is

(statvolts/cm)2, z in units of nm and t in units of fs.
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Bright solitary wave

For a > 0, b < 0 and c2 = 0, Eq. (2.18) can be solved for bright solitary wave

solutions given by

α(ξ) =

√
−2a

b
sech

(√
aξ
)
, (2.21)

For this case, the complete solution for Eq. (2.9) reads

E(t, z) =

√
−2a

b
sech

(√
aξ
)
ei(mξ−kz). (2.22)

The typical profile for normalized intensity of bright solitary wave solutions is de-

picted in Fig. 2.3.
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Figure 2.3: Evolution of bright solitary waves for ωm
ωp

= 0.8. Here, intensity of

bright solitary wave is plotted in normalized form. The physical units of intensity

is (statvolts/cm)2, z in units of nm and t in units of fs.

Hence the existence of dark or bright solitary wave solutions for Eq. (2.9)

depends on the sign of variables a and b which in turn depends on normalized

frequency through various equation parameters. In the focusing NIMs for ωm

ωp
= 0.8,

the condition for dark solitary wave solutions i.e. a < 0 and b > 0, should be fulfilled

in the frequency range of 0.36 ≤ ω ≤ 0.53. On the other hand, condition for bright

solutions i.e. a > 0 and b < 0, do not exist for any range of ω. However a change

in the size of element of NIMs may influence the plasma frequencies of electric and

magnetic fields, which results in the change of model parameters of equation Eq.



2.3 Ultrashort pulse propagation in NIMs 49

(2.9). This property may provide possibilities for the formation of bright solitons in

NIMs. In Fig. 2.4, we have depicted the evolution of dark solitary wave for ω = 0.4

and ωm

ωp
= 0.8. In Fig. 2.1, the values of various model parameters used for ω = 0.4

are P = −3.95304, Q = 3.19295, γ = 9.49928× 10−11, R = −4.52347× 10−22, Λ =

−3.2397× 10−11 and S = 4.39908× 10−12. The corresponding wave parameters are

found to be η = 1, u = 91.446, m = −2.53729 and k = 34.0524.
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Figure 2.4: Evolution of dark solitary wave in focusing NIMs for ω = 0.4, λp = 1 µm

and ωm
ωp

= 0.8. The intensity is plotted in units of 1010× (statvolts/cm)2, z in units

of nm and t in units of fs.

2.3.3 Fractional-transform solutions in absence of quintic

nonlinearity and second-order nonlinear dispersive

term

In the absence of quintic nonlinearity and second-order nonlinear dispersion term,

we obtain very interesting fractional-transform solutions. For R = 0 and S = 0,

both of the Eqs. (2.13) and (2.14) can be solved consistently to obtain

α′′ = aα + bα3 + c1, (2.23)
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for a = 1
Qη3

(Pmη2+3Qm2η−u), b = −6γ
Pη2

, m = −γ
Λη

and K = Qm3η3+ P
2
m2η2−um,

along with a constraint condition on self-steeping parameter as Λ = 6Qγ
P
.

Eq. (2.23) can be solved for travelling wave solutions by using a fractional

transformation [26, 27]

α(ξ) =
A+By2(ξ)

1 +Dy2(ξ)
, (2.24)

which maps the solutions of Eq.(2.23) to the elliptic equation y′′ ± py ± qy3 = 0,

where p and q are real, provided the determinant AD ̸= B. For explicitness, we

consider the case where y = cn(ξ,m0) with m0 as modulus parameter. Then upon

substitution of Eq. (2.24) into Eq. (2.23) and equating the coefficients of equal

powers of cn(ξ,m0) will yield the following consistency conditions:

− aA− 2(AD −B)(1−m0)− bA3 − c1 = 0, (2.25)

− 2aAD − aB + 6(AD −B)D(1−m0)− 4(AD −B)(2m0 − 1)− 3bA2B − 3c1D = 0,

(2.26)

− aAD2 − 2aBD + 4(AD −B)D(2m0 − 1) + 6(AD −B)m0 − 3bAB2 − 3c1D
2 = 0,

(2.27)

− aBD2 − 2(AD −B)Dm0 − bB3 − c1D
3 = 0. (2.28)

For different values of m0, we obtain different types of travelling wave solutions.

Periodic solution

For m0 = 0 and A = 0, Eq. (2.23) admits the non-singular periodic solution of the

following type

α(ξ) =
2c1
a

(
cos2 ξ

1− 2
3
cos2 ξ

)
, (2.29)

where a = 4 and c1
2 = (−128/27b). It is possible if b = −6γ

Pη2
is negative. Using this,

the complete solution for GNLSE can be written as

E(t, z) =
c1
2

(
cos2 ξ

1− 2
3
cos2 ξ

)
ei(mξ−kz), (2.30)
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for c1
2 = (64Pη2/81γ). Here one can find that the solution is consistent only for

-10
0

10t
-10
-5

0
5

10

z
0
1

2

3

4

ÈE
2

Figure 2.5: Evolution of periodic pulse in focusing NIMs for ω = 0.75, λp = 1 µm

and ωm
ωp

= 0.8. The intensity is plotted in units of 1010× (statvolts/cm)2, z in units

of nm and t in units of fs.

same signs of P and γ, which is possible in specific range of normalized frequency ω.

Hence, a physically interesting periodic solution will emerge for normalized frequency

in the range of ω ≥ 0.71. For example, evolution of periodic solution for ω = 0.75

and ωm

ωp
= 0.8, corresponding to P = 1.74536, Q = −1.2109 and γ = 9.91683×10−11,

is shown in Fig. 2.5. The corresponding wave parameters are found to be η = 1, u =

5.05324, m = 0.240229 and k = −1.18036. The value of self-steeping parameter, as

given by constraint condition, used here is Λ = −4.12807× 10−10.

Dark/bright solitary wave solution

We found general localized solution for the case when the Jacobian elliptic modulus

m0 = 1. The set of Eqs. (2.25) to (2.29) can be solved consistently for the unknown

parameters A,B,D and for a particular value of c1. The generic profile of the

solution reads

α(ξ) =
A+B sech2ξ

1 +D sech2ξ
. (2.31)

Since the analytical form of solution is known, a simple maxima-minima analysis

can be done to distinguish parameter regimes supporting dark and bright soliton
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solutions [26]. In this case, when AD < B one gets a bright soliton, whereas if

AD > B then a dark soliton exists. The complete solution of GNLSE reads

E(t, z) =

(
A+B sech2ξ

1 +D sech2ξ

)
ei(mξ−kz). (2.32)

We have worked out a physically interesting case for ω = 0.5, corresponding to

P = 1.74536, Q = −1.2109 and γ = 9.91683 × 10−11, and shown the evolution

of bright solitary wave in Fig. 2.6. The various unknown parameters are A =

9676.83, B = −8504.92, D = −0.8789, and corresponding wave parameters are

found to be η = 1, u = 0.1, m = 0.20887 and k = −1.08431. The value of

self-steeping parameter is comes out to be Λ = −5.42307× 10−10.
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Figure 2.6: Evolution of bright solitary wave in focusing NIMs for ω = 0.5 and

λp = 1 µm. The intensity is plotted in units of 1010 × (statvolts/cm)2, z in units of

nm and t in units of fs.

Pure cnoidal solution

For 0 < m0 < 1, we can found different types of cnoidal solutions. We list here one

particular case, for m = 5/8, A = 0 and D = 1, we obtain the solution

α(ξ) =
−14c1
3a

(
cn2(ξ,m0)

1 + cn2(ξ,m0)

)
, (2.33)
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where a = −7/2 and c1
2 = (9/4b). Using this, we found the solution for Eq. (2.9)

as

E(t, z) =
4c1
3

(
cn2(ξ,m0)

1 + cn2(ξ,m0)

)
ei(mξ−kz), (2.34)

for c1
2 = (−3Pη2/8γ). Here one can find that the solution is consistent only for

opposite signs of P and γ, which is possible in specific range of normalized frequency

ω < 0.71.

2.3.4 Conclusions

We have obtained dark and bright solitary wave solutions in NIMs with higher

order effects for some constraints. The evolution of dark solitary waves is shown for

specific range of normalized frequency while the existence of bright solitary waves

are possible under some conditions on model parameters which can be achieved

through the structural changes in negative index materials. We further studied

fractional-transform solutions, containing periodic, hyperbolic and cnoidal solitary

wave solutions for GNLSE, in absence of quintic and nonlinear dispersion terms.

The work presented in this sub-section appeared in [9].

2.4 Pulse Propagation in NIMs in the presence of

external source

2.4.1 Governing equation

To control the dynamics of a nonlinear system, it is essential to investigate the

effects of dissipation, noise and external force on the system. Dissipation leads to

loss of energy and hence affects the dynamics of system under consideration, whereas

the external tunable driving acts as a source of energy and helps in stabilizing the

dynamical system. Barashenkov et al. [28] considered the parametrically driven

damped NLSE and showed the existence of stable solitons only if the strength of
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the driving force would be more than the damping constant. The studies of ac-

driven NLSE date back to the works of Malomed et al. [29, 30]. Since then it has

been studied in many fields [31, 32, 26, 33, 34, 35, 36, 37]. For NIMs soliton-like

solutions are studied for different structures of NLSE, however the wave propagation

in NIMs in the presence of external source has not been discussed so far. The pulse

propagation for NIMs in presence of exteranal source can be modeled by following

equation (GNLSE)

i
∂ϕ

∂z
− P

2

∂2ϕ

∂t2
− iQ

∂3ϕ

∂t3
+ γ|ϕ|2ϕ+ iΛ

∂(|ϕ|2ϕ)
∂t

= β ei(ψ(ξ)−kz), (2.35)

where ϕ is complex envelop of the field and P,Q, γ,Λ, β represent GVD, TOD, cubic

nonlinearity, SS and external source coefficients respectively. In absence of external

source, Eq. (2.35) is similar to Eq. (2.9) if quintic nonlinearity and nonlinear

dispersion terms are absent This equation without source has already been studied

for solitary wave [7] and for fractional solutions [9].

2.4.2 Fractional transform solutions

In order to find exact travelling wave solutions, we have chosen the following ansatz

ϕ(z, t) = α(ξ) ei[ψ(ξ)−kz], (2.36)

where ξ = (t − uz) is the travelling coordinate. Substituting Eq. (2.36) in Eq.

(2.35), and separating real and imaginary part we obtain two equations.

uαψ′ + kα− P

2
α′′ +

P

2
α(ψ′)2 + 3Qα′′ψ′ + 3Qα′ψ′′ +Qαψ′′′ −Qα(ψ′)3

+ γα3 − Λα3ψ′ − β = 0, (2.37)

−uα′ − Pα′ψ′ − P

2
αψ′′ −Qα′′′ + 3Qα′(ψ′)2 + 3Qα′ψ′ψ′′ + 3Λα2α′ = 0. (2.38)

Choosing

ψ′(ξ) = m, (2.39)
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on substituting Eq. (2.39) in Eq. (2.37) and integrating we obtain

α′′ = aα + bα3 + c1, (2.40)

for a = −P+u−3Qm2

Q
, b = Λ

Q
. On substituting Eq. (2.39) and Eq. (2.40) in Eq.

(2.38), we obtain

m =
1

4Λ

(
γ +

PΛ

2Q

)
, (2.41)

β = 3Qmc− Pc

2
, (2.42)

and

k =
Pa

2
+Qm3 − um− 3Qma+

Pm2

2
. (2.43)

Eq. (2.40) can be solved for travelling wave solutions by using a fractional transfor-

mation

α(ξ) =
A+By2(ξ)

1 +Dy2(ξ)
, (2.44)

which maps the solutions of Eq.(2.40) to the elliptic equation y′′ ± py ± qy3 = 0,

provided AD ̸= B. For explicitness, we consider the case where y = cn(ξ,m0) with

m0 as modulus parameter. Then upon substitution of Eq. (2.44) into Eq. (2.40)

and equating the coefficients of equal powers of cn(ξ,m0) will yield the following

consistency conditions:

−aA− 2(AD −B)(1−m0)− bA3 − c1 = 0, (2.45)

−2aAD − aB + 6(AD −B)D(1−m0)− 4(AD −B)(2m0 − 1)− 3bA2B

−3c1D = 0, (2.46)

−aAD2 − 2aBD + 4(AD −B)D(2m0 − 1) + 6(AD −B)m0 − 3bAB2

−3c1D
2 = 0, (2.47)

−aBD2 − 2(AD −B)Dm0 − bB3 − c1D
3 = 0. (2.48)

For different values of m0, we can obtain different types of travelling wave solutions.



56 Chapter 2

Periodic solution

For m0 = 0 and A = 0, Eq. (2.40) admits the non-singular periodic solution of the

following type

α(ξ) =
2c1
a

(
cos2 ξ

1− 2
3
cos2 ξ

)
, (2.49)

where a = 4 and c1
2 = (−128/27b). Intensity profile for periodic solution for typical

values of parameters is shown in Fig. (2.7).
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Figure 2.7: Typical intensity profiles for (a) periodic and (b) solitary wave solutions.

Dark/bright solitary wave solution

We found general localized solution for the case when the Jacobian elliptic modulus

m = 1. The set of Eqs. (2.45) to Eq. (2.48) can be solved consistently for the

unknown parameters A,B,D and for a particular value of c1. The generic profile of

the solution reads

α(ξ) =
A+B sech2ξ

1 +D sech2ξ
. (2.50)

Since the analytical form of solution is known, a simple maxima-minima analysis

can be done to distinguish parameter regimes supporting dark and bright soliton

solutions. In this case, when AD < B one gets a bright soliton, whereas if AD > B

then a dark soliton exists. Intensity profile for dark and bright solutions is as shown

in Fig solution for typical values of parameters is shown in Fig. 2.8.
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Figure 2.8: Typical intensity profiles for (a) dark and (b) bright solitary wave

solutions.

2.4.3 Conclusion

We have also explored periodic, dark and bright solitary wave solutions for NIMs in

presence of external source. The obtained solutions are necessarily fractional type.

The study of pulse propagation in NIMs in presence of external source is a exciting

field of research. Because NIMs are artificial materials and so we might have the

flexibility of controlling these pulses.

The work discussed in second sub-section appeared in [38].

2.5 Chirped pulses in NIMs for coupled propaga-

tion equation

In this section, we consider the coupled pulse propagation equation in NIMs in the

presence of electric and magnetic self-steepening effects, and obtain exact chirped

soliton and periodic solutions for this model. These solutions are found for different

choices of dispersion and other model parameters. It is shown that nonlinear chirp

associated with each of these solutions is directly proportional to the intensity of

the wave and saturates at some finite value as the retarded time approaches its
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asymptotic value.

2.5.1 Chirped wave

We have already discussed that NLSE admits bright and dark solitons depending

on the signs of nonlinearity and dispersion. Such pulses are free of chip because

chirp produced by Kerr nonlinearity is balanced by the chirp produced GVD [39].

If we include higher order terms, gain/loss term or variable coefficients in NLSE

then chirped solitons are possible in optical medium [40, 41, 42]. A chirped wave is

a signal in which the frequency increases (up-chirp) or decreases (down-chirp) with

time. The chirp signal are also known as sweep signal and quadratic-phase signal.

The chirp play a significant role in the pulse evolution. Such signals are commonly

used in sonar and radar. In optics, ultrashort laser pulses also exhibit chirp, which, in

optical transmission systems interacts with the dispersion properties of the materials,

increasing or decreasing total pulse dispersion as the signal propagates. The chirped

pulses finds application in pulse compression and pulse amplification. The case of

linear chirp frequency was first investigated by Hmurcik et al. [43] for a sech-shaped

pulse with quadratic variation of phase in time. Desaix et al. [44] investigated the

effect of the linear and nonlinear chirp on the subsequent pulse development. Large

number of research groups has done a lot of work on the existence of chirped solitons

in nonlinear optical systems [45, 40, 41, 42, 46]. They have found that the properties

of chirped solitons depend not only on the amplitude, but also on the form, of the

initial chirp. A typical chirp signal is shown in Fig. (2.9).

2.5.2 Model equation

Earlier researchers have derived the mathematical model describing pulse propaga-

tion in NIMs created from split-ring resonators and arrays of wires embedded in

a Kerr medium, exhibiting both electric and magnetic nonlinearity of Kerr-type.

Sarma et al. [47] derived a new generalized model by assuming that the unit cell

size of the NIMs is considerably smaller than the operating wavelength and thereby
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Figure 2.9: Chirp Signal

took an effective medium approach [48]. Unlike other authors, they invoked the

electric and magnetic Kerr effect quite early into the derivation. Using this model,

they studied the modulational instability for pulse propagation in NIMs in the pres-

ence of both electric and magnetic self-steepening effects. We have considered the

same model and obtained exact soliton and periodic solutions for coupled general-

ized NLSE. In order to make the paper self contained, we sketch the essential steps of

derivation of coupled equations, Ref. [47], for pulse propagation in nonlinear NIMs.

The coupled generalized NLSE for a nonlinear NIM exhibiting Kerr-type electric

and magnetic nonlinear polarization is

∂A

∂Z
=

i

2k0
∇2

⊥A− iβ2
2

∂2A

∂T 2
+ iPnl

(
1 + iPS

∂

∂T

)
|A|2A+ iQnl|B|2

(
A+ iPse

∂A

∂T

)
,

∂B

∂Z
=

i

2k0
∇2

⊥B − iβ2
2

∂2B

∂T 2
+ iQnl

(
1 + iQS

∂

∂T

)
|B|2B + iPnlA

2

(
B + iQsh

∂B

∂T

)
,(2.51)

where Pnl =
ω2
0µ(ω0)ϵ0χ

(3)
E

2k0
, Ps =

[
1
ω0

(
1 + γ

µ(ω0)

)
− 1

k0V

]
, Pse =

1
ω0

(
1 + α

ϵ(ω0)

)
,

Qnl =
ω2
0ϵ(ω0)µ0χ

(3)
M

2k0
, Qs =

[
1
ω0

(
1 + α

ϵ(ω0)

)
− 1

k0V

]
, Qsh =

1
ω0

(
1 + γ

µ(ω0)

)
,

with

β2 = [(αγ + ω0µ(ω0)α
′/2 + ω0ϵ(ω0)γ

′/2− 1/V 2)], γ = ∂ [ωµ(ω)] /∂ω|ω=ω0 ,

γ′ = ∂2 [ωµ(ω)] /∂2ω|ω=ω0 , α = ∂ [ωϵ(ω)] /∂ω|ω=ω0 ,

α′ = ∂2 [ωϵ(ω)] /∂2ω|ω=ω0 and V = 2k0/ [ω0ϵ(ω0)γ + ω0µ(ω0)α] .

Here Pnl, Ps and Pse are the nonlinear, self-steepening and coupling coefficients
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for the electric field, respectively; Qnl, Qs and Qsh are the nonlinear, self-steepening

and coupling coefficients for the magnetic field, respectively. The dielectric permit-

tivity (ϵ) and magnetic permeability (µ) are dispersive in NIMs and their frequency

dispersion is given by the lossy Drude model [5], as µ(ω) = µ0

(
1− (ωpm/ωpe)2

ω(ω+iγm)

)
,

ϵ(ω) = ϵ0

(
1− 1

ω(ω+iγe)

)
, where ω = ω0/ωpe, ωpe and ωpm are the respective electric

and magnetic plasma frequencies. ωpe = 2πc
λpe

where λpe is corresponding plasma

wavelength and c is velocity of light. k0 = ω0 n(ω0)
c

is wave number at the central

frequency of electromagnetic pulse, n(ω0) is the refractive index of material at ω0.

γe and γm denotes electric and magnetic loss respectively normalized with respect

to electric and magnetic plasma frequencies. For lossless medium γe= γm = 0. ϵ0

and µ0 the free space electric permittivity and magnetic permeability respectively.

To observe the properties of negative refraction in metamaterials, the values and

range of ωpm and ωpe has to be chosen carefully. Various research groups have done

theoretical and experimental analysis for ωpm/ωpe = 0.8. For this specific choice,

the refractive index is negative only if 0 < ω/ωpe < 0.8. The Eq. (2.51) is the gen-

eralized coupled NLSE for pulse propagation through NIMs embedded into a Kerr

medium. The Fig. 2.10(a) shows the variation of n, Pnl, Ps and Pse with normalized

frequency ω/ωpe for ωpm/ωpe = 0.8, and the Fig. 2.10(b) shows the variation of

n,Qnl, Qs and Qse with normalized frequency ω/ωpe for ωpm/ωpe = 0.8.

In order to write Eq. (2.51) in normalized form, the normalized variables are

[47], ζ = Z/LD, τ = T/T0, Ψ1 = A
A0
, Ψ2 = B

B0
, X = x

L⊥
Y = y

L⊥
, ψ1 = NEΨ1

and ψ2 = NHΨ2, where LD = T 2
0 /|sgn(β2)| is the dispersion length and T0 is pulse

width which is of the order of femtosecond (fs). The terms, sgn(β2) define the sign

of group velocity dispersion term (GVD). A0 and B0 are the initial amplitudes of

the electric and magnetic fields. NE and NH may be termed as the order of soliton

for the electric and magnetic fields, defined as N2
E = LD/Lpnl, N

2
H = LD/LMnl.

Here we have taken NE = NH = N. It is also defined that nonlinear polarization

length for electric and magnetic field are LPnl = 1/PnlA
2
0 and LMnl = 1/QnlB

2
0 . A

characteristic length L⊥ =
√

|LD/k0|. Hence, Eq. (2.51) can be transformed into



2.5 Chirped pulses in NIMs for coupled propagation equation 61

0.4 0.5 0.6 0.7 0.8

-4

-2

0

2

4

Ω0�Ωpe

HaL

n

Pse

Pnl

Ps

0.4 0.5 0.6 0.7 0.8

-4

-2

0

2

4

Ω0�Ωpe

HbL

n

Qsh

Qnl

Qs

Figure 2.10: (a) Variation of refractive index n, electric nonlinear coefficients Pnl,

electric self-steepening parameter Ps, electric coupling coefficients Pse with normal-

ized frequency ω0/ωpe. Pnl is calculated in the unit of ωpeχ
(3)
E /c, while Ps and Pse

are calculated in the units of 1/ωpe. (b) Variation of refractive index n, magnetic

nonlinear coefficients Qnl, magnetic self-steepening parameter Qs, magnetic cou-

pling coefficients Qsh with normalized frequency ω0/ωpe. Qnl is calculated in the

unit of ωpeχ
(3)
M /c, while Qs and Qsh are calculated in the units of 1/ωpe. For both

plots, γe = γm = 0.

normalized form as

∂ψ1

∂ζ
=
isgn(k0)

2
∇2
τψ1 −

isgn(β2)

2

∂2ψ1

∂τ 2
+ i

(
1 + iSE

∂

∂τ

)
|ψ1|2ψ1 + i|ψ2|2ψ1

− CE|ψ2|2
∂ψ1

∂τ
,

∂ψ2

∂ζ
=
isgn(k0)

2
∇2
τψ2 −

isgn(β2)

2

∂2ψ2

∂τ 2
+ i

(
1 + iSH

∂

∂τ

)
|ψ2|2ψ2 + i|ψ1|2ψ2

− CH |ψ1|2
∂ψ2

∂τ
, (2.52)

where ∇2
⊥ = ∂2/∂X2+∂2/∂Y 2 is the transverse Laplacian, ψ1 and ψ2 are the slowly

varying envelops in the direction of propagation of electric and magnetic fields,

respectively. SE = |Ps|/T0 is electric self-steepening parameter and SH = |Qs|/T0
is the magnetic self steepening parameters in the normalized unit. CE = |Pse|/T0 is

electric coupling coefficients and CH = |Qsh|/T0 is the magnetic coupling coefficient

in the normalized unit. In this work, we are interested in the role of magnetic

self- steepening SH and electric self-steepening SE in soliton formation. Hence,
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we neglect the diffraction and the last term in the generalized model. Hence, the

modified coupled Eq. (2.52) reads [47]

∂ψ1

∂ζ
= −isgn(β2)

2

∂2ψ1

∂τ 2
+ i

(
1 + iSE

∂

∂τ

)
|ψ1|2ψ1 + i|ψ2|2ψ1,

∂ψ2

∂ζ
= −isgn(β2)

2

∂2ψ2

∂τ 2
+ i

(
1 + iSH

∂

∂τ

)
|ψ2|2ψ2 + i|ψ1|2ψ2. (2.53)

2.5.3 Travelling wave solutions

It is already discussed that for this coupled equation, MI have been studied by

Sarma et al. [47]. In Ref. [10], authors have studied the same form of coupled

equation in the absence of self-steepening coefficients SE and SH , and obtained dark

solitons for the choice of ψ2 = ψ1. Our interest is to obtain the exact analytical

solutions for this equation in the presence of self-steepening coefficients. As it is

quiet complicated to solve the coupled equation for a particular system, so in order

to obtain analytical solutions of Eq. (2.53), we have also restricted ourselves to the

scalar choice ψ2 = a ψ1, where a is a constant. On substituting it into Eq. (2.53),

and using SE = a2SH = S and ψ1 = ψ, the set of coupled equation reduces to one

equivalent equation given as

∂ψ

∂ζ
+
isgn(β2)

2

∂2ψ

∂τ 2
+ S

∂

∂τ
|ψ|2ψ − i(a2 + 1)|ψ|2ψ = 0. (2.54)

To obtain the travelling solutions of Eq. (2.54), we consider the following ansatz

ψ(ζ, τ) = α(ξ)eiχ(ξ), (2.55)

where α(ξ), χ(ξ) are amplitude and phase, respectively, and ξ = ζ − vτ is travelling

frame of reference with v as the velocity of frame. For this form of the solution,

the corresponding chirping can be found as δω(τ, ζ) = − ∂
∂τ
[χ(ξ)] = vχ′(ξ), where

prime represent differentiation w.r.t. ξ. Substituting Eq. (2.55) into Eq. (2.54) and
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separating real and imaginary parts, we get a set of equations as

α′ − v2sgn(β2)χ
′α′ − sgn(β2)

2
v2αχ′′ − 3vSα2α′ = 0, (2.56)

αχ′+
sgn(β2)

2
v2α′′ − sgn(β2)

2
v2α(χ′)2 − (a2 + 1)α3 − vSα3χ′ = 0. (2.57)

Assuming

χ′ = − 3S

2vsgn(β2)
α2 +

1

sgn(β2)v2
, (2.58)

Eqs. (2.56) and (2.57) are found to be consistent with the following equation

α′′ + pα5 + qα3 + rα = 0, (2.59)

where p = 3S2

4v2(sgn(β2))
2 , q =

−2
sgn(β2)v2

(a2 + 1 + S
sgn(β2)v

), r = 1
(sgn(β2))

2v4
. Eq. (2.59) is

an elliptic equation which admits a variety of solutions such as periodic, bright and

dark solitons if certain relations among the coefficients are satisfied [25]. We observed

that depending upon the sign of dispersion term and other model parameters, one

can obtain different forms of soliton solutions for this equation. We found that

unlike standard NLSE solitons, chirp does not cancel its effects. Here, the obtained

solutions are chirped soliton solutions. The mathematical expression for chirp help

to obtain its initial profile with which a pulse should be propagated through NIMs

so that resulting pulse retains its solitary wave character. Apart from the soliton-

like solutions, Eq. (2.59) also possess the chirped periodic solutions under different

parametric conditions.

Bright and dark soliton solutions

For sgn(β2) = −1, Eq. (2.59) has bell-shaped solution of the form

α(ξ) =
√
P (1± sech (ηξ)), (2.60)
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where v = (
√
5−2)√

5(a2+1)
S, P = 2√

5vS
and η =

√
4

5v4
. For this case, the chirping is given

by

δω =
3S

2
P (1± sech( ηξ))− 1

v
. (2.61)

The +ve and -ve sign in Eq. (2.60) corresponds to bright and dark solitons, respec-
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Figure 2.11: (a) Intensity profile and (b) chirp profile (for Z = 0) of bright soliton;

(c) Intensity profile and (d) chirp profile (for Z = 0) of dark soliton; for ω/ωpe =

0.6, ωpm/ωpe = 0.8, T0 = 1fs and λpe = 1µm. The other parameters are SE = 0.245,

SH = 1.524, a = 0.4007, v = 0.022, P = 164.29 and η = 1806.03. Here, time (T ) is

in units of femtoseconds and distance (Z) is in the units of LD.
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tively. The values of the solution parameters are implicitly dependent on relative

values of ω, ωpe and ωpm. Fixing these values amounts to unique value of velocity

of the both bright and dark soliton pulse but having different initial chirp. The

intensity profiles for bright and dark solitons, and corresponding chirp profiles for

specific values of parameters are shown in Fig. 2.11, respectively. Here we choose

ωpm/ωpe = 0.8, T0 = 1fs and λpe = 1µm. As stated earlier, all the equation param-

eters depend on the normalized frequency (ω/ωpe), so once we fixed ω/ωpe = 0.6,

we obtain SE = 0.245 and SH = 1.524 and hence a = 0.4007. The value of velocity

is also unique for each frequency, and for this case v = 0.022. The corresponding

values of other parameters are P = 164.29 and η = 1806.03.

Fractional solutions

For sgn(β2) = +1, Eq. (2.59) possesses fractional solutions of the form [49, 50],

α(ξ) =
n sinh(mξ)√
ϵ+ sinh2(mξ)

, (2.62)

provided n =
√

−2r(2ϵ−3)
q(ϵ−3)

, m =
√

−rϵ
ϵ−3

, p = −3m2

n4

(
ϵ−1
ϵ

)
. Depending upon the value of

m (real or imaginary), these solutions would be either solitary or periodic. Analysis

shows that for ϵ < 1 these fractional solutions corresponds to solitary wave and for

ϵ > 3 these represents the periodic solutions. For these solutions, the chirping can

be written as

δω = −3S

2

(
n2 sinh2(mξ)

ϵ+ sinh2(mξ)

)
+

1

v
. (2.63)

For negative value of sgn(β2), normalized frequency has to be adjusted accordingly.

These solutions are obtained here for normalized frequency ω
ωpe

= 0.55, correspond-

ing to this frequency, other parameters are, SH = 1.41, SE = 0.518 and hence

a = 0.606.

Special Cases

Case I : ϵ < 1

For this range of ϵ,m is found to be real and corresponding solutions are dark solitary
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wave. The amplitude and chirp profile of these solutions is shown in Fig. 2.12(a)

and Fig. 2.12(b), respectively, for ϵ = 0.9, S = 0.5183, v = −0.875, m = 0.854,

n = 0.981. It is interesting to note that by changing the value of wave parameter ϵ,

in the given range, one can vary the velocity of pulse for same frequency.
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Figure 2.12: (a) Intensity profile (b) Chirp profile (for Z = 0) of dark soliton for
ω
ωpe

= 0.55, a = 0.606, S = 0.518, v = −0.875, m = 0.854, n = 0.981 and ϵ = 0.9.

Time (T) is in the units of femtoseconds and distance (Z) is in the units of LD.

Case II : ϵ > 3

For this range of ϵ, m is imaginary and hence obtained solutions are periodic in

nature. The amplitude and chirp profile of these periodic solutions is shown in

Fig. 2.13(a) and Fig. 2.13(b), respectively, for ϵ = 10, S = 0.518, v = −0.785,

m = 1.939i, n = 2.361. Here also, it is possible to control the velocity of travelling

periodic wave by varying the value of ϵ.

Periodic solutions

Eq. (2.59) possesses a another class of periodic solutions of the form, for sgn(β2) =

+1,

α(ξ) =
m√

1 + n cos2 (δ ξ)
, (2.64)
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Figure 2.13: (a) Amplitude profile (b) Chirp profile (for Z = 0) of periodic solution

for ω
ωpe

= 0.55, a = 0.606, S = 0.518, v = −0.785,m = 1.939i, n = 2.361 and ϵ = 10.

Time (T ) is in the units of femtoseconds and distance (Z) is in the units of LD.

where

m = −
√
2

√
1

Sv
+
a2

S2
+

1

S2
− γ

S2v2
,

γ =
√
(a2 + 1)v3(2S + a2v + v), δ = − 1

v2
,

n = 2(
2v

S
+

2a2v

S
+
v2

S2
+
a4v2

S2
+

2a2v2

S2
− γ

Sv
− a2γ

S2
− γ

S2
). (2.65)

For this case, the chirping can be written as

δω = −3S

2

(
m2

1 + n cos2 (δ ξ)

)
+

1

v
. (2.66)

As clear from the its expression, similar to the intensity profile chirp also vary

periodically. The typical intensity and chirp profile for periodic solutions for ω
ωpe

=

0.71, is shown in Fig. 2.14(a) and Fig. 2.14(b) respectively. For this frequency

SH = 2.759, SE = 1.265 and hence a = 0.677. The values of other parameters are

S = 1.265, m = −0.624, n = −0.939 and δ = −1. This solution is applicable for

any positive values of v.
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Figure 2.14: (a) Intensity profiles and (b) chirp profile (for Z = 0) of periodic

solitons for ω
ωpe

= 0.71. The other parameters are S = 1.26, a = 0.677, m =

−0.6241, n = −0.939, v = 1 and δ = −1. Here, time (T ) is in units of femtoseconds

and distance (Z) is in units of LD.

2.5.4 Conclusion

Our work encourages the study of the propagation of chirped periodic and soliton

pulses through NIMs. NIMs are artificially designed materials, so we have freedom to

vary the parameters in order to control the nature of these travelling waves. For the

normal dispersion, we obtained the bright and dark soliton solutions having unique

velocity but different initial chirp for same normalized frequency; on the other hand

for the anomalous dispersion, it possesses the fractional solutions having different

velocity for a particular normalized frequency. Moreover there is also a possibility

of obtaining the periodic nonlinear waves in NIMs in anomalous dispersion regime.

We have plotted these solutions for different normalized frequencies. It is shown

that nonlinear chirp associated with each of these solutions is directly proportional

to the intensity of the pulse and saturates at some finite value as the retarded time

approaches its asymptotic value. Hence we represent the soliton-like solutions in

NIMs for frequency dependent parameters. These solutions can find applications in

nonlinear optics of NIMs.
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Chapter 3

Spatial, temporal, and

spatio-temporal modulational

instabilities in twin-core optical

fibers

3.1 Introduction

In this chapter, we study Modulational instability (MI) in the context of twin-core

fiber. Three different types of MI — spatial, temporal, and spatiotemporal have

been studied by the method of linear stability analysis. We have investigated the

variation of spatial MI with quintic nonlinearity for self-focusing and self-defocusing

materials. For the temporal case, the impact of various parameters such as CCD,

FOD, SS, and quintic nonlinearity on the MI gain in normal as well as anomalous

dispersion regimes has been studied.

75
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3.2 Modulation instability

In nonlinear dynamics, much attention has been devoted to the investigations of

modulational instability (MI) in the framework of nonlinear Schrödinger equation.

MI is a characteristic feature of a wide class of nonlinear dispersive systems. This

phenomenon arises due to interplay between nonlinearity and dispersion. It is a

fundamental nonlinear phenomenon [1, 2, 3] in which a weak perturbation imposed

on a continuous wave (cw) state grows exponentially, which results in the break up

of cw into a train of ultra-short pulses. Hence MI considered as a basic process

that classifies the quantitative behavior of modulated waves and may initialize the

formation of stable entities such as envelope of solitons. In general, MI typically

occurs in the same parameter region where soliton-like phenomenon occurs. The

relation between MI and solitons is best observed in the fact that the trains of pulses

that emerge from the MI process are actually trains of almost ideal solitons. Hence

it can be loosely considered as a precursor to soliton formation. MI can be classified

into three main categories—spatial [4, 5], temporal [6, 7] and spatiotemporal [8,

9]. The spatial MI occurs due to the interaction between the nonlinearity and

diffraction which results into the breaks up of homogeneous beam into numerous

small filaments. The temporal MI occurs due to interplay between the group velocity

dispersion(GVD) and nonlinearity and manifests itself as break-up of cw into a train

of ultrashort pulses. In temporal MI the anomalous GVD plays the same role as

is played by diffraction term in spatial MI. However in spatiotemporal MI all the

three terms—nonlinearity, dispersion and diffraction are nonzero and it occurs due

to the simultaneous presence of spatial and temporal MI in nonlinear medium. To

study the MI of any nonlinear evolution equation (NLEE), following steps have to

be followed:-

• Steady state solution of the equation is considered.

• The beginning of instability can be investigated by perturbing the steady state

solution of NLEE, by applying some weak perturbation.
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• As perturbation is assumed as small so the resultant equation is linearized in

perturbation term by neglecting the terms containing higher order perturba-

tion.

• This equation can be easily solved in frequency domain. However, the equation

contain the term having complex conjugate of perturbation hence the Fourier

components at frequencies Ω and −Ω are coupled. Therefore perturbation

term is splitted into two parts.

• The dispersion relation for MI gain is obtained from resultant equation.

MI plays an important role in many nonlinear phenomenon such as cross phase

modulation [2, 10], four-wave mixing [11], parametric oscillators [12], polarization

and birefringence [13, 14, 15, 16], temporal solitons in fibers [17, 18, 19], supercon-

tinuum generation [20] and Bragg’s grating [3, 21]. MI has been studied since 1960s

and has been extensively explored in different areas such as negative refractive index

materials (NIMs) [22, 23], silicon photonic nanowires [24], single core optical fiber

[17, 25], and plasma [26, 27]. Some recent works related to study of MI in twin-core

fiber appeared in [28, 29].

3.3 Twin core fiber (TCF)

The twin-core fiber (TCF) is a fiber that consists of two linearly coupled identical

parallel cores as shown in Fig. 3.1. In TCF optical power can be transferred between

two cores periodically [30]. This phenomenon of periodic optical power transfer

between the two cores along a TCF is widely used in many practical optical devices.

The evolution of slowly varying envelope in twin-core fiber is governed by a set of

linearly coupled NLSE. The coupling coefficient for linear coupling between the two

equations dictates the strength of the power transfer. The magnitude of coupling

constant depends upon the design and operation condition of the optical fiber. In

general, the coupling coefficient depends on the optical wavelength. The effect of
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Figure 3.1: Twin-core fiber.

a dispersive coupling coefficient on the propagation of pulses in a twin-core fiber is

considered recently [31, 32, 33, 34, 35, 36, 37, 38]. The coupling coefficient dispersion

(CCD) plays an important role in pulse distortion and it can also results into the

pulse breakup and thus effect nonlinear pulse switching [32, 33]. In twin-core fiber

the pulse break-up effect has been observed experimentally [37] and this effect has

been applied to the generation of high-speed pulse trains [38].

Recently Li et. al. [39] have investigated the effect of CCD on temporal MI for

pulse propagation in twin-core fiber in the presence of GVD and cubic nonlinearity.

Motivated by this work we considered the pulse propagation with higher order effects

such as FOD, SS, quintic nonlinearity and investigated MI in twin-core fiber. In

particular, we have studied three different types of MI — spatial, temporal, and

spatiotemporal MI. We have investigated the variation of spatial MI with quintic

nonlinearity for self-focusing and self-defocusing materials. For the temporal case we

have studied the impact of various parameters such as CCD, FOD, SS, and quintic

nonlinearity on the MI gain in normal as well as anomalous dispersion regimes.
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3.4 Mathematical model for pulse propagation in

twin-core fiber

In twin-core fiber each core supports only a single mode. The evolution of the

electric-field envelopes along the fiber is described by pair of generalized linearly

coupled nonlinear Schrödinger equation given by

∂Ψ1

∂ξ
=

i

2k0
∇2

⊥Ψ1 −
iβ2
2

∂2Ψ1

∂τ 2
+ iCnl(1 + iCs

∂

∂τ
)|Ψ1|2Ψ1 − δ3

∂3Ψ1

∂τ 3

+ iδ4
∂4Ψ1

∂τ 4
+ iCq|Ψ1|4Ψ1 + P

∂Ψ2

∂τ
,

∂Ψ2

∂ξ
=

i

2k0
∇2

⊥Ψ2 −
iβ2
2

∂2Ψ2

∂τ 2
+ iDnl(1 + iDs

∂

∂τ
)|Ψ2|2Ψ2 − δ3

∂3Ψ2

∂τ 3

+ iδ4
∂4Ψ2

∂τ 4
+ iDq|Ψ2|4Ψ2 + P

∂Ψ1

∂τ
, (3.1)

where ξ and τ are the propagation distance and time respectively. Ψ1 and Ψ2 are

the slowly varying pulse envelops in two cores, β2, measures the GVD at the carrier

frequency (β2 < 0 for anomalous dispersion and β2 > 0 for normal dispersion). Cnl

and Dnl are the coefficients of cubic nonlinearity in two cores of the fibers. CnlCs

and DnlDs self-steepening coefficients in two cores. δ3, δ4 are the coefficient of TOD

and FOD respectively. Cq, Dq are the coefficients of quintic nonlinearity in two cores

and P is the coupling coefficients dispersion term.

3.5 Analysis of modulaional instability

For analysis of MI, introducing the normalized units,

Z = ξ
LD

, t = τ
T0
, U = Ψ1

Ψ01
, V = Ψ2

Ψ02
, X = x

L⊥
, Y = y

L⊥
, u = NEU , v = NHV ,

where T0 is the pulse width, LD = T 2
0 /|β2| is the dispersion length, and Ψ01

and Ψ02 are the initial amplitudes of the slowly varying envelope in two cores of

the fiber. NE and NH may be termed the order of solitons and are defined as

N2
E = LD/LCnl

, N2
H = LD/LMnl

, and we assume that NE = NH = N. We
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define nonlinear polarization length as LCnl
= 1/CnlΨ

2
01 and LMnl

= 1/DnlΨ
2
02.

Let gE = Ψ2
01Cqnl/(CnlN

2) and gH = Ψ2
02Dqnl/(DnlN

2) and characteristics length

L⊥ =
√

|LD/k0| is also introduced. β3 = δ3/T0|β2|, β4 = δ4/T
2
0 |β2| and C1 =

PΨ02/Ψ01|β2|. Thus Eq. (3.1) can be transformed into the following form

∂u

∂Z
=
isgn(k0)

2
∇2

⊥u−
isgn(β2)

2

∂2u

∂t2
+ if(1 + iSE

∂

∂t
)|u|2u− β3

∂3u

∂t3

+ iβ4
∂4u

∂t4
+ igE|u|4u+ C1

∂v

∂t
,

∂v

∂Z
=
isgn(k0)

2
∇2

⊥v −
isgn(β2)

2

∂2v

∂t2
+ if(1 + iSE

∂

∂t
)|v|2v − β3

∂3v

∂t3

+ iβ4
∂4v

∂t4
+ igH |v|4v + C1

∂u

∂t
. (3.2)

Here SE = |Cs|/T0, SH = |Ds|/T0 also ∇⊥ = ∂2

∂X2 +
∂2

∂Y 2 is the transverse Laplacian.

The continuous steady state solution of Eq. (3.2) is given by

u = a0 exp(iΩ0aZ), (3.3)

and

v = b0 exp(iΩ0bZ), (3.4)

where a0 and b0 are the normalized amplitude, Ω0a and Ω0b are corresponding non-

linear phase shift. On substituting Eq. (3.3) and Eq. (3.4) in Eq. (3.2), we obtain

Ω0a = fa20 + b20 + gEa
4
0, (3.5)

and

Ω0b = a20 + fb20 + gHb
4
0. (3.6)

If continuous wave solution is slightly perturbed from the steady state,

u(X, Y, Z, T ) = [a0 + a(X, Y, Z, T )] exp(iΩ0aZ), (3.7)

v(X, Y, Z, T ) = [b0 + b(X,Y, Z, T )] exp(iΩ0bZ), (3.8)
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where a(X, Y, Z, T ) and b(X, Y, Z, T ) are the perturbations such that a, b << 1.

Substituting Eq. (3.7) and Eq. (3.8) into Eq. (3.2), we obtain the following equa-

tions
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∂Z
= p

i

2
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2
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∗)− β3

∂3a

∂T 3
+ iβ4

∂4a

∂T 4

− fSE(2a
2
0

∂a

∂T
+
∂a∗

∂T
+ 2a0a

∂a

∂T
+ 2a2a

∂a∗

∂T
+ 2aa∗

∂a

∂T
+ 2aa0

∂a∗

∂T
+ 2a0a

∗ ∂a

∂T
)

+ 2igE(a
4
0a+ a40a

∗ + a20a
3 + 3a30a

2 + 2a0a
3a∗ + 6a20a

2a∗ + 6a30aa
∗ + a3(a∗)2

+ 3a0a
2(a∗)2 + 3a20a(a

∗)2 + a30(a
∗)2) + C1

∂a

∂T
,

∂b

∂Z
= p

i

2
∇2

⊥b−
iδ

2

∂2b

∂T 2
+ if(b20b+ b20b

∗ + b2b∗ + b2b0 + 2b0bb
∗)− β3

∂3b

∂T 3
+ iβ4

∂4b

∂T 4

− fSH(2b
2
0

∂b

∂T
+
∂b∗

∂T
+ 2b0b

∂b

∂T
+ 2b2b

∂b∗

∂T
+ 2bb∗

∂a

∂T
+ 2bb0

∂b∗

∂T
+ 2b0b

∗ ∂b

∂T
)

+ 2igH(b
4
0b+ b40b

∗ + b20b
3 + 3b30b

2 + 2b0b
3b∗ + 6b20b

2b∗ + 6b30bb
∗ + b3(b∗)2

+ 3b0b
2(b∗)2 + 3b20b(b

∗)2 + b30(b
∗)2) + C1

∂b

∂T
. (3.9)

On linearizing Eq. (3.9) in a and b and neglecting terms with

a2, aa∗, a ∂a
∂T
, a∗ ∂a

∂T
, a∂a

∗

∂T
, b2, bb∗, b ∂b

∂T
, b∗ ∂b

∂T
, b∂b

∗

∂T
and other higher order terms of a and

b we obtain

∂a

∂Z
= p

i

2
∇2

⊥a−
iδ

2

∂2a

∂T 2
+ ifa20(a+ a∗)− fSEa

2
0(2

∂a

∂T
+
∂a∗

∂T
)− β3

∂3a

∂T 3

+ iβ4
∂4a

∂T 4
+ 2igEb

4
0(a+ a∗) + C1

∂a

∂T
,

∂b

∂Z
= p

i

2
∇2

⊥b−
iδ

2

∂2b

∂T 2
+ ifb20(b+ b∗)− fSHb

2
0(2

∂b

∂T
+
∂b∗

∂T
)− β3

∂3b

∂T 3

+ iβ4
∂4b

∂T 4
+ 2igHa

4
0(b+ b∗) + C1

∂a

∂T
. (3.10)

Now substituting

a = a1 exp(i(kZ−ΩT + qXX+ qY Y ))+a2 exp(−i(kZ−ΩT + qXX+ qY Y )), (3.11)



82 Chapter 3

and

b = b1 exp(i(kZ−ΩT + qXX + qY Y ))+ b2 exp(−i(kZ−ΩT + qXX + qY Y )), (3.12)

where k is wave number, Ω is frequency and q2 = q2X + q2Y is transverse wave

number of the perturbation respectively. Now substituting SHb
2
0 = SEa

2
0 = s and

gHb
4
0 = gEa

4
0 = G in Eq. (3.10), we obtain

(
ika1 +

iq2

2
a1 −

iδ

2
Ω2a1 − ifa20a1 − ifa20a2 − 2ifMΩa1 + 2ifMΩa2 + iQΩ3a1 − iRΩ4a1

− 2iGa1 − 2iGa2 + isa20Ωa1 + iPΩb1 − ia0b0b1 − ia0b0b2 − iC1Ωa1
)
exp(iχ) + (−ika2

+
iq2

2
a2 −

iδ

2
Ω2a2 − ifa20a2 − ifa20a1 − 2ifMΩa1 + 2ifMΩa2 − iQΩ3a2 − iRΩ4a2 − 2iGa2

− 2iGa1 + isa20Ωa2 + iPΩb2 − ia0b0b2 − ia0b0b1 + iC1Ωa2 = 0
)
exp(−(iχ)) = 0, (3.13)

(
ikb1 +

iq2

2
b1 −

iδ

2
Ω2b1 − ifb20b1 − ifb20b2 − 2ifMΩb1 + 2ifMΩb2 + iQΩ3b1 − iRΩ4b1

− 2iGb1 − 2iGb2 + isb20Ωb1 + iPΩa1 − ia0b0a1 − ia0b0a2 − iC1Ωb1
)
exp(iχ) + (−ikb2

+
iq2

2
b2 −

iδ

2
Ω2b2 − ifb20b2 − ifb20b1 − 2ifMΩb1 + 2ifMΩb2 − iQΩ3b2 − iRΩ4b2 − 2iGb2

− 2iGb1 + isb20Ωb2 − iPΩa2 − ia0b0a2 − ia0b0a1 + iC1Ωb2
)
exp(−(iχ)) = 0, (3.14)

where χ = kZ−ΩT +qXX+qY Y , equating the coefficients of exp(iχ) and exp(−iχ)

from Eq. (3.13) and Eq. (3.14) equal to zero separately, we obtain

ika1 +
iq2

2
a1 −

iδ

2
Ω2a1 − ifa20a1 − ifa20a2 − 2ifMΩa1 + 2ifMΩa2 + iQΩ3a1 − iRΩ4a1

− 2iGa1 − 2iGa2 + isa20Ωa1 + iPΩb1 − ia0b0b1 − ia0b0b2 − iC1Ωa1 = 0, (3.15)

−ika2 +
iq2

2
a2 −

iδ

2
Ω2a2 − ifa20a2 − ifa20a1 − 2ifMΩa1 + 2ifMΩa2 − iQΩ3a2 − iRΩ4a2

− 2iGa2 − 2iGa1 + isa20Ωa2 + iPΩb2 − ia0b0b2 − ia0b0b1 + iC1Ωa2 = 0, (3.16)
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ikb1 +
iq2

2
b1 −

iδ

2
Ω2b1 − ifb20b1 − ifb20b2 − 2ifMΩb1 + 2ifMΩb2 + iQΩ3b1 − iRΩ4b1

− 2iGb1 − 2iGb2 + isb20Ωb1 + iPΩa1 − ia0b0a1 − ia0b0a2 − iC1Ωb1 = 0, (3.17)

−ikb2 +
iq2

2
b2 −

iδ

2
Ω2b2 − ifb20b2 − ifb20b1 − 2ifMΩb1 + 2ifMΩb2 − iQΩ3b2 − iRΩ4b2

− 2iGb2 − 2iGb1 + isb20Ωb2 − iPΩa2 − ia0b0a2 − ia0b0a1 + iC1Ωb2 = 0. (3.18)

We can write Eq. (3.15)–Eq. (3.18) in matrix form as follows



A11 A12 + wΩa0
2 0 0

A21 − wΩa0
2 A22 + wΩa0

2 −ΩP A24

0 0 A11 A12 + wΩb0
2

−PΩ A24 A21 − wΩb0
2 A22 + wΩb0

2





a1

a2

b1

b2


=



0

0

0

0


,

where

A11 = −pq2 + δΩ2 + 2RΩ4,

A12 = −k + p q
2

2
− δΩ2

2
+ 3fsΩ−QΩ3 −RΩ4 + CΩ + PΩ,

A21 = −k + p q
2

2
− δΩ

2

2
+ fsΩ−QΩ3 −RΩ4 − CΩ,

A22 = k − p q
2

2
− 2fsΩ + δΩ

2

2
+ fa0

2 +QΩ3 +RΩ4 − CΩ + 2G,

A24 = ΩP + Γa0b0.

Hence

A11 A12 + wΩa0
2 0 0

A21 − wΩa0
2 A22 + wΩa0

2 −ΩP A24

0 0 A11 A12 + wΩb0
2

−PΩ A24 A21 − wΩb0
2 A22 + wΩb0

2


= 0,
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from above matrix, we obtain following dispersion relations

k =
1

2

(
2γ ± 2

(
−4G2 + α2 + C2

1Ω
2 + f 2s2Ω2 − 2fGa20 + fαa20 − 2fGb20 + fαb20

−
(
−16G2C2

1Ω
2 + 4C2

1α
2Ω2 + 4f 2C2

1s
2Ω4 − 8fGC2

1Ω
2a20 + 4fC2

1αΩ
2a20 + 4f 2G2a40

− 4f 2Gαa40 + f 2α2a40 − 8fGC2
1Ω

2b20 + 4fC2
1αΩ

2b20 − 8f 2G2a20b
2
0 + 8f 2Gαa20b

2
0

− 2f 2α2a20b
2
0 + 4f 2G2b40 − 4f 2Gαb40 + f 2α2b40

) 1
2

) 1
2

)
, (3.19)

where α = −p q2
2
+ δΩ

2

2
+ β3Ω

4 + 2G, γ = 2fsΩ − β4Ω
3. The steady-state solution

become unstable when k becomes imaginary, because then the perturbation grows

exponentially. The general expression for the MI gain gMI is

gMI = 2Im(k), (3.20)

hence

gMI = ±
(
−
(
−4G2 + α2 + C2

1Ω
2 + f 2s2Ω2 − 2fGa20 + fαa20 − 2fGb20 + fαb20

−
(
−16G2C2

1Ω
2 + 4C2

1α
2Ω2 + 4f 2C2

1s
2Ω4 − 8fGC2

1Ω
2a20 + 4fC2

1αΩ
2a20

+ 4f 2G2a40 − 4f 2Gαa40 + f 2α2a40 − 8fGC2
1Ω

2b20 + 4fC2
1αΩ

2b20 − 8f 2G2a20b
2
0

+ 8f 2Gαa20b
2
0 − 2f 2α2a20b

2
0 + 4f 2G2b40 − 4f 2Gαb40 + f 2α2b40

) 1
2

) 1
2

)
, (3.21)

from gain expression it is clear that MI is independent of third order dispersion. We

study three different types of MI - spatial, temporal and spatiotemporal.

3.5.1 Spatial MI analysis

Spatial modulation instability can be studied by substituting Ω = 0 in Eq. (3.21)

which reduces the expression to

gMI = ±1

2

√
−(−8Gpq2 + p2q4 − 4fpq2a20), (3.22)



3.5 Analysis of modulaional instability 85

MI will occurs only if q2 >
8G+4fa20

p
. Now from Eq. (3.22), it is clear that spatial MI

gain is dependent of quintic nonlinearity only. The variation of gain with quintic

nonlinearity as shown in Fig. (3.2). It can be clearly observed that the MI gain
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Figure 3.2: Gain profile for the spatial MI (a)for self-focussing medium taking

f = +1; (A;B;C; for G = −1,−2,−3) (b) for defocussing medium taking f = −1;

(A;B;C; for G = 0.1, 0.2, 0.3) and the values of other parameters are a0 = 0.93, b0 =

0.676, p = −1 .

spectrum is symmetric with respect to q = 0. From Fig. 3.2(a) it is clear that for

judicious choice of various parameters of the gain profile for self-focusing medium

(f=+1) increases with decrease in the value of quintic nonlinearity— G. Eventually,

due to MI gain, the continuous wave beam would break up spontaneously into

a periodic pulse train, known as solitons. Such soliton pulses would exist if the

following condition is met: q2 >
8G+4fa20

p
. Similarly the variation of MI gain profile

for defocusing medium (f=-1) with normalized frequency Ω is depicted in Fig. 3.2(b).

It is clear from this figure, that the MI gain decreases with the increase in the value

of G.
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3.5.2 Temporal MI analysis

The temporal MI can be studied by substituting q = 0 in Eq. (3.21), hence it reads

gMI =
(
−
(
−4G2 + α2 + C2

1Ω
2 + f 2s2Ω2 − 2fGa20 + fαa20 − 2fGb20 + fαb20

−
(
−16G2C2

1Ω
2 + 4C2

1α
2Ω2 + 4f 2C2

1s
2Ω4 − 8fGC2

1Ω
2a20 + 4fC2

1αΩ
2a20

+ 4f 2G2a40 − 4f 2Gαa40f
2α2a40 − 8fGC2

1Ω
2b20 + 4fC2

1αΩ
2b20 − 8f 2G2a20b

2
0

+ 8f 2Gαa20b
2
0 − 2f 2α2a20b

2
0 + 4f 2G2b40 − 4f 2Gαb40 + f 2α2b40

) 1
2

) 1
2

)
, (3.23)

where α = δΩ
2

2
+ β3Ω

4 + 2G.

The temporal MI gain is a function of quintic nonlinearity, FOD term, CCD

term and SS term. We can study the impact of each parameter on MI. MI for this

case occur normal dispersion with self-focusing, and anomalous dispersion with self-

defocusing properties and vice-versa. The variation of MI with quintic nonlinearity

G for all the four cases is depicted in Fig. (3.3). From Fig. 3.3(a) it is clear that for

focusing medium with anomalous dispersion as the value of G decreases the MI gain

increase and at G = −0.4 the MI gain become so much high that pulse breaks up

into shorter pulses. In Fig. 3.3(b) plot is shown for focusing medium with anomalous

dispersion, the plot shows that as the value of G decreases MI gain increases and

at G = −0.5 shorter pulses are formed. In Fig. 3.3(c) the MI gain is plotted for

defocusing medium and normal dispersion, the diagram clearly shows that at lower

value of G, MI is high and it decreases as the value of G increases. In Fig. 3.3(d)

the MI gain is plotted for defocusing medium and anomalous dispersion, again the

same effect appear as the value of G decreases the MI increases and at G = −1.2

pulse breaks up into shorter pulses. So it is clear that with judicious choice of G

and other parameters we can control MI.

Impact of various parameters on MI in normal dispersion regime

Now we shall discuss the effect of various parameters on modulation instability in

focussing region and with normal dispersion. The effect of CCD term on the MI is
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Figure 3.3: Gain profile of temporal Modulation instability in medium with follow-

ing properties (a) focussing, normal dispersion is plotted with G = −0.2,−0.3,−0.4

for A, B, C respectively and β4 = 2.9;C1 = 1.1; s = 1 (b) focussing and anomalous

dispersion is plotted with G = −0.3,−0.4,−0.5;β4 = 2.1;C1 = 1.063; s = 1 (c) defo-

cussing, normal dispersion is plotted with G = 0.5, 0.6, 0.7;β4 = 1;C1 = 1.7; s = 1.5

(d) defocussing anomalous dispersion is plotted with G = −1,−1.1,−1.2;β4 =

1.5;C1 = 1.69; s = 0.2. The values of other parameters are a0 = 0.93 and b0 = 0.676.

shown in Fig. (3.4). From Fig. 3.4(a) and Fig. 3.4(b) it is clear that there is only

single MI band for particular set of parameters. As the value of CCD parameter
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Figure 3.4: (a) 3D plot and (b) 2D plot (A;B;C;D;E for C1 = 0.2; 0.4; 0.6; 0.8; 1)

showing the variation of the temporal MI gain spectrum with CCD parameter C1

in focussing, normal dispersion regime. Other parameters used are G = −0.3, s =

0.001, a0 = 1.93, b0 = 0.00676, and β4 = 2

increases, the MI gain increases and MI side band shifts toward higher frequency.

HaL

0
1

2W
0.0

0.5

1.0

Β4

0.0

0.5

1.0

1.5

. Gain

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

W

G
ai

n

HbL

A

B
C

Figure 3.5: (a) 3D plot and (b) 2D plot (A;B;C for β4 = 0.3; 0.5; 1) plots show-

ing the variation of the temporal MI gain spectrum with FOD parameter β4 in

focussing, normal dispersion regime. The other parameters are G = 0.5, s =

0.01, a0 = 1.93, b0 = 0.00676 and C1 = 2
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Fig. (3.5) shows the variation of gain spectrum with FOD for various set of

parameters in normal dispersion regime. From Fig. 3.5(a) and Fig. 3.5(b) it is clear

that there is only single MI band for particular set of parameters. As the value of

FOD increases the MI gain decreases and with increase in FOD the MI side band

shifts toward lower frequency side. The variation of MI gain with self steepening

parameter is shown in Fig. (3.6).
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Figure 3.6: (a) 3D plot and (b) 2D plot (A;B;C for s = 0.1, 0.2, 0.3) showing the

variation of the temporal MI gain spectrum with SS parameter s in focussing, nor-

mal dispersion regime. The other parameters are G = 0.5, s = 0.01, a0 = 1.93, b0 =

0.00676 and C1 = 2

The Fig. 3.6(a) and Fig. 3.6(b) shows that the MI gain decreases with increase

in SS parameter and it leads to the slight shifting of MI gain band towards the higher

frequency side.

Impact of various parameters on MI in anomalous dispersion regime

Now we shall discuss the effect of various parameters on modulation instability in

focussing region and with anomalous dispersion. The effect of CCD term on the
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MI is shown in fig. (3.7). From the Fig. 3.7(a) and Fig. 3.7(b) it is clear that
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Figure 3.7: (a) 3D plot and (b) 2D plot (A; B; C; D; E for C1 = 0.2; 0.4; 0.6; 0.8; 1)

showing the variation of the temporal MI gain spectrum with CCD parameter C1 in

focussing,anomalous dispersion regime. Other parameters used are G = −0.4, s =

0.5, a0 = 1.93, b0 = 0.00676, and β4 = 1

in anomalous dispersion regime there are two bands; one with high amplitude is

on higher frequency side and other is on the lower frequency side. Analysis shows

that with increase in the value of CCD parameter the gain of lower frequency band

decreases and gain of higher frequency sideband increases. It further shows that at

very large value of CCD parameter lower frequency band vanishes and only higher

frequency band persists. The two bands will remain up to the critical value of

C1 and as earlier as the the C1 crosses this value only the higher frequency band

will remain. This new feature of MI is introduced by CCD term. These results

suggest the possibility of switching of the dominant MI from low-frequency band to

a high-frequency band.

The variation of MI gain with FOD in anomalous dispersion regime is shown

in Fig. 3.8(a) and Fig. 3.8(b). It can be clearly seen that initially there exists

two sidebands due to the variation of MI gain with FOD term, namely, lower band

on lower frequency side and higher band on higher frequency side. As the value

of FOD increases, the MI gain for higher frequency band decreases and it starts
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shifting toward lower frequency side and for lower frequency band MI gain decreases

and it also shifts toward lower frequency side.
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Figure 3.8: (a)3D plot and (b) 2D plot (A;B;C for β4 = 1, 2, 3) showing the

variation of the MI gain spectrum with FOD parameter β4 in focussing, anomalous

dispersion regime. The values of other parameters are G = −0.4, s = 1, a0 =

1.93, b0 = 0.00676 and C1 = 1.

Similarly Fig. (3.9) shows that there are two side bands formed in the MI gain,

due to the variation of SS parameter. One band lies on the lower frequency side

which is having lower MI gain and other on the higher frequency side which is having

higher MI gain. Analysis shows that with increase in value of SS parameter the MI

gain for lower frequency sideband increases and it shifts toward higher frequency

side, however MI gain for higher frequency side decrease with increase in the value

of SS parameter, and it slightly shifts toward lower frequency side. Similarly the

impact of various parameters on MI gain can be studied in defocussing case.



92 Chapter 3

HaL

-1
0

1W 0.0

0.5

1.0

1.5

s
0.0

0.5

1.0

. Gain

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

W

G
ai

n

HbL

A

B

C

Figure 3.9: (a)3D plot and (b) 2D plot (A;B;C for s = 0.7, 0.9, 1.1) showing the

variation of the MI gain spectrum with self-steepening parameter s in focussing,

anomalous dispersion regime. The values of other parameters are G = −0.3, a0 =

1.93, b0 = 0.00676, β4 = 1 and C1 = 1.

3.5.3 Spatiotemporal MI analysis

To study spatiotemporal MI we consider q ̸= 0 and Ω ̸= 0 in Eq. (3.21). Here

we carry out a study on the spatiotemporal MI for focusing case with normal and

anomalous dispersion, and MI for defocusing case with normal and anomalous dis-

persion regimes. The results for the spatiotemporal MI for twin-core fibers are

summarized in the plots of gain versus temporal frequency Ω and spatial frequency

q, which are shown in Fig. (3.10).

3.6 Conclusion

In this work, we have studied the modulational instability for a twin-core fibers in

the presence of higher order effects such as quintic nonlinearity, SS, TOD, FOD,

and CCD term in both normal and anomalous dispersion regimes discussed. It
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Figure 3.10: spatiotemporal Modulation instability for (a) focussing, normal dis-

persion (b) focussing anomalous dispersion (c) defocussing, normal dispersion (d)

defocussing anomalous dispersion case for G = −0.4, s = 0.01, a0 = 0.93, b0 = 0.676

and C1 = 1.

is observed that impact of TOD is minimal on MI gain. We have discussed the

characteristic of three kinds of MI—spatial, temporal, spatiotemporal. It is found

that the spatial MI gain is independent of SS, FOD, CCD terms. We have further

investigated the impact of quintic nonlinearity, CCD, FOD, SS on temporal MI gain

separately. It is observed that all these terms play vital role in MI gain and none

of the terms can be ignored. A judicious choice of all these parameters provides
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us a freedom to control the MI gain spectrum. To sum up, the MI in twin-core

fiber occurs for all combinations of nonlinearity and dispersion. Since the solitons

and MI occur in the same parameter regime, this detailed MI analysis suggests the

generation of ultrashort pulses in twin-core optical fibers for different parameter

domains.

The work presented above is submitted to Journal of Optical Fiber Technology

for publication as an article [40].
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Chapter 4

Study of modulational instability

and solitary wave solutions of

variant of nonlinear Schrödinger

equation

4.1 Introduction

In this chapter we discuss about the MI and solitary wave solutions for a class of

NLSEs. This chapter is divided into two sections. In first section we discuss about

bright and dark solitary wave solutions and other localized solutions for higher order

NLSE in the presence of non-Kerr terms. In second section we study the modulation

instability for NLSE phase locked with an external source. In this section we have

studied the impact of variation of source term on MI for focussing as well as de-

focussing nonlinearity.
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102 Chapter 4

4.2 Ultrashort soliton-like solutions GNLSE in

the presence of non-Kerr terms

In first chapter we have dicussed that in optical fiber communication, a major role

is played by the NLSE [1]. This equation provide a canonical description of the

dynamics of quasi monochromatic pulses in weakly nonlinear media and hence is

encountered in a variety of fields such as hydrodynamics, plasma physics, optics

and in the description of Bose-Einstein condensates. The waveguides which are

used for the propagation of pecosecond pulses in nonlinear optical communication

systems are usually of Kerr type. The dynamics of such pulses are described by

NLSE with cubic nonlinear terms [2, 3, 4]. To enlarge the information carrying

capacity, it is necessary to transmit ultrashort optical pulse of subpicosecond and

femtosecond size. Now a days in telecommunication and ultrafast signal routing

systems, due to the strong intensity of incident light, nonlinearity of non-Kerr type

comes into play, the results of which is the change in the stability and physical

features of the NLSE solitons. The influences of non-Kerr nonlinearity is described

by the NLSE family of equations which include the higher order terms [5, 6, 7, 8, 9].

The higher order nonlinear terms arise from the expansion of the refractive index

in terms of light intensity ’I’ of the pulse n = n0 + n2I + n4I2 + ............ here

n0 is the linear refractive index coefficient, n2 and n4 are the nonlinear refractive

index coefficients which originate from the third and fifth order susceptibilities,

respectively. The polarizations induced through third and fifth order susceptibilities

give rise to the cubic (Kerr) and quintic (non-Kerr) terms in the NLSE equation,

respectively. This type of nonlinearity which originates from third and fifth order

susceptibilities can be obtained in optical materials such as semiconductors, glasses

doped with semiconductors, calcogenide glasses, polydiacctylene toluene sulfonate

(PTS), and some transparent organic materials.

Recently Chaudhuri et. al, [10] considered a generalized NLSE model with non-

Kerr terms and presented the existence of dipole solitons. We considered the same

model for ultrashort pulse propagation and explored a variety of optical solitons for
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different parametric conditions. We show the existence of bell and kink type solitons

including double-kink and algebraic solitons. The algebraic solitons are necessarily

of the Lorentzian type.

4.2.1 Governing Equation

We considered the generalized NLSE for ultrashort pulse propagation through non-

Kerr medium, as

ψz− iψtt− i|ψ|2ψ−ψttt−α1(|ψ|2ψ)t−α2ψ(|ψ|2)t− iα3|ψ|4ψ−α4(|ψ|4ψ)t−α5ψ(|ψ|4)t = 0,

(4.1)

where t is the normalized time and z is the normalized distance along the fiber. The

terms ψtt, ψttt and |ψ|2ψ are group velocity dispersion (GVD), third-order dispersion

(TOD) and self phase modulation(SPM) respectively. The coefficients α1, α2 denotes

self-steepening and self-frequency shift due to stimulated Raman scattering (SRS).

The coefficients α3, α4 and α5 are the quintic non-Kerr terms. These non-Kerr terms

are crucial when shorter pulses of femtosecond width are produced by increasing

intensity of incident light. The nonlinear absorption during propagation in highly

nonlinear material is compensated by these terms and these terms play an important

role for the post-soliton compression to get highly stable compressed optical pulses.

If α3, α4 and α5 are all equal to zero then Eq. (4.1) reduce to higher order NLSE

which is analyzed by many authors from different points of view [11, 12].

4.2.2 Soliton-like solutions

In order to find exact solitary wave solutions of Eq. (4.1), we have chosen the

following form for the complex envelope travelling wave solution

ψ(z, t) = ρ(ξ) ei(χ(ξ)−kz), (4.2)

where ξ = t − uz is the travelling coordinate with 1
u
as velocity. ρ, χ are real

functions of ξ.
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Substituting Eq. (2) in Eq. (1) and separating real and imaginary part of

equation, we obtain following equations

−uρ′+2ρ′χ′+ρχ′′−ρ′′′+3ρ′(χ′)2+3ρχ′χ′′−3α1ρ
2ρ′−2α2ρ

2ρ′−5α4ρ
4ρ′−4α5ρ

4ρ′ = 0,

(4.3)

−uχ′ρ−kρ−ρ′′+ρ(χ′)2−ρ3−3ρ′′χ′−3ρ′χ′′−ρχ′′′+ρ(χ′)3−α1ρ
3χ′−α3ρ

5−α4χ
′ρ5 = 0.

(4.4)

Assume

χ′ = m (4.5)

Using Eq. (4.5) in Eq. (4.3) and integrating we get

ρ′′ + aρ+ bρ3 + cρ5 = 0, (4.6)

where a = (u− 2m− 3m2), b = 3α1+2α2
3 and c = 5α4+4α5

5

Substituting Eq. (4.5) and Eq. (4.6) in Eq. (4.4) and equating the various coefficients to

zero, we obtained a set of equations

3m+ 1 = 0, (4.7)

− um− k +m2 +m3 = 0, (4.8)

1 + α1m = 0, (4.9)

α3 +mα4 = 0. (4.10)

Solving these equations, we obtain m = −1
3 , α1 = 3, α4 = 3 α3 and k = 9u+2

27 . Hence,

using these expressions, the coefficients in Eq. (4.6) reads as a = u + 1
3 , b = 9+2α2

3 and

c = 5α4+4α5
5 .

Eq. (4.6) is an elliptic equation and is known to admit a variety of solutions. In

this paper, we report various localized solution for different parametric conditions. It is

interesting to note that if c = 0, then Eq. (4.6) reduces to a cubic nonlinear equation which

admits bright and dark soliton solutions. Also for the case a = 0, we obtained Lorentzian-

type algebraic solutions [13]. In the most general case, when all the coefficients are non-

zero, Eq. (4.6) can be mapped into a ϕ6 field equation to obtain double-kink solutions,

[14] and bright and dark soliton solutions [15].
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In the following, we describe the parametric conditions for which various soliton-like

solutions exist for this model.

Kink-type soliton

For c = 0., we get α4 = −4
5 α5. In this situation two subcases are possible which yields

soliton solutions.

For b < 0 and a > 0, we obtain dark soliton of the form

ψ(ξ) =

√
−a
b

tanh

(√
a

2
ξ

)
ei(mξ−kz), (4.11)

provided α2 < −9
2 and u > −1

3 .

The amplitude profile for dark soliton for α2 = −5 and u = −1
4 is shown in Fig.

4.1a and corresponding intensity profile is shown in Fig. 4.1b.
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Figure 4.1: (a) Amplitude and (b) intensity of soliton is given in Eq. (4.11) for

α2 = −5 and u = −1
4 .

For b > 0 and a < 0, we obtain bright soliton of the form

ψ(ξ) =

√
−2a

b
sech

(√
−aξ

)
ei(mξ−kz), (4.12)

provided α2 > −9
2 and u < −1

3 .
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The the plot of amplitude profile for bright soliton for α2 = −4 and u = −2
3 is shown

in Fig. 4.2a and corresponding intensity profile is shown in Fig. 4.2b.
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Figure 4.2: (a) Amplitude and (b) intensity of bright soliton given in Eq. (4.12) for

α2 = −4 and u = −2
3 .

Algebraic soliton

For a = 0, we obtain another interesting algebraic soliton-like solutions. In particular for

b < 0 and c > 0, the Eq. (4.6) have following solutions, [13]

ψ(ξ) =
1√

M +Nξ
ei(mξ−kz), (4.13)

where M = −2c
3b , N = − b

2 . For α2 = −5, α4 = −3, α5 = 5, u = −1
3 the corresponding

value of M = 2, N = 0.167. The amplitude profile for algebraic solution given in Eq.

(4.13) for α2 = −5, α4 = −3, α5 = 5, u = −1
3 is shown in Fig. 4.3a and corresponding

intensity profile is shown in Fig. 4.3b.

Double-kink soliton

For a ̸= 0, b ̸= 0, c ̸= 0., Eq. (4.6) can be solved for different solitary wave solutions,

like double-kink, bell and kink type solution for different parametric conditions
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Figure 4.3: (a) Amplitude and (b) intensity plot of bright algebraic soliton-like

solution given in Eq. (4.13) for α2 = −5, α4 = −3, α5 = 5, u = −1
3 .

a) Eq. (4.6) possesses double-kink solutions given as, [14, 16]

ψ(ξ) =
P sinh(qξ)√
ϵ+ sinh2(qξ)

ei(mξ−kz), (4.14)

where a = −q2
(
ϵ−3
ϵ

)
, b = 2q2

p2

(
2ϵ−3
ϵ

)
, c = −3q2

p4

(
ϵ−1
ϵ

)
. Using the expression for a, b, c we

can calculate the various unknown parameters P , q and u for different value of ϵ. For

α2 = 1, α4 = −1, α5 = −2, the value of various unknown parameters can be calculated for

different ϵ. The double-kink feature will be more prominent for large value of ϵ. For ϵ =

10, 100, 1000, these parameters are found to be u = −1.17876, q = 1.09897, P = 1.05826;

u = −1.29297, q = 0.994642, P = 1.03105; u = −1.30191, q = 0.985644, P = 1.0287

respectively. The amplitude profile for double-kink solution given in Eq. (4.14) for

α2 = 1, α4 = −1, α5 = −2 and for different values of ϵ is shown in Fig.4.4a and cor-

responding intensity profile for double-kink solution is shown in Fig.4.4b.

b) It is interesting to note that for a < 0 and b > 0, Eq. (4.6) has both bright and

dark soliton solutions depending upon the value of c [15].
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Figure 4.4: (a) Amplitude profile of double-kink solution given in Eq. (4.14) for

α2 = 1, α4 = −1, α5 = −2 and ϵ = 10 (solid line), ϵ = 100 (dotted line), ϵ = 1000

(dashed line), (b) corresponding intensity profile for ϵ = 1000.

If c < | 3b216a |, then Eq. (4.6) has a bright soliton-like solution, which is given as

ψ(ξ) =
P√

1 + r cosh(qξ)
ei(mξ−kz), (4.15)

where p2 = −4a
b , q

2 = −4a, r2 = 1− 16ca
3b2

. Using the expression for a, b, c we can calculate

the P, q, r. For α2 = 5, α4 = −1, α5 = −2, u = −2 the corresponding values of P =

1.02598, q = 2.58199, r = 0.651017. The amplitude profile for bright soliton solution

given in Eq. (4.15) for α2 = 5, α4 = −1, α5 = −2, u = −2 is shown in Fig. 4.5a and

corresponding intensity profile is shown in Fig. 4.5b.

If c = | 3b216a | then Eq. (4.6) has a kink solution, which is given as

ψ±(ξ) = ±P
√

1± tanh(qξ) ei(mξ−kz), (4.16)

where P 2 = −2a
b , q2 = −a. Using a and b we can calculate the value of P and q. For

α2 = 5, α4 = −1, α5 = −2, u = −2 the corresponding value of P = 0.725476 and q =

1.29099. The amplitude profile for solution given in Eq. (4.16) is shown in Fig. 4.6a

for α2 = 5, α4 = −1, α5 = −2, u = −2 and corresponding intensity profile for solution is

shown in Fig. 4.6b.
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Figure 4.5: (a) Amplitude and (b) intensity of bright soliton given in Eq. (4.15) for

α2 = 5, α4 = −1, α5 = −2 and u = −2.

4.2.3 Conclusion

In this work, we studied the GNLSE with non-Kerr terms, which is short wave equation.

We demonstrated that the non-Kerr terms induces different types of bright and dark soli-

tons, which are subjected to constraint relations among the parameters. The higher order

terms are responsible for compensation of the nonlinear absorption when pulse propagate

through highly nonlinear media and play an important role for the post-soliton compres-

sion to get stable compressed optical pulse. These femtosecond pulses are useful to increase

the capacity of carrying information in order to make ultra fast communication which is

useful for trans-continental and trans-ocean

The work discussed in this section appeared in [17].

4.3 Modulation instability of NLSE phase locked

with an external source

4.3.1 Introduction

We have already discussed in second chapter that, MI is a process in which a small ampli-

tude and phase perturbation grows rapidly under the effect of dispersion and nonlinearity
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Figure 4.6: (a) Amplitude and (b) intensity of kink soliton solution given in Eq.

(4.16) for α2 = 5, α4 = −1, α5 = −2, u = −2.

and results into breakup of continuous wave (cw) into pulse train during propagation [18].

MI was first predicted by Bespalov and Talanov [18] for electromagnetic waves in nonlinear

media with cubic nonlinearity. Later on Benjamin and Feir predicted MI for deep water

waves [19]. Since then MI has been studied in various fields such as fluid dynamics [20, 21],

plasma physics [22, 23] and nonlinear optics [24, 25, 26]. In optics MI is of fundamental

importance for the formation of temporal and spatial solitons. MI results into the chain of

ultrashort pulses which are helpful for high-bit-rate data transmission through an optical

fiber [27, 28]. We know the propagation through an optical fiber is described by NLSE. MI

for various structure of NLSE has been extensively studied in different context by many

research groups [29, 30, 31]. However for NLSE driven by an external source MI has not

been studied so far.

In fist chapter we have already discussed that external tunable driving acts as a

source of energy and helps in stabilizing the dynamical system against dispersive losses.

Externally driven NLSE has been firstly proposed in the seminal work of Kaup and Newell

[32]. This equation features prominently in the problem of pulse propagation in asymmet-

ric, twin-core optical fibers [33, 34, 35, 36, 37, 38, 39, 40, 41]. The important applications

of externally driven NLSE are to long Josephson junctions [42], charge density waves

[43], plasmas driven by radio frequency fields [44] and chaotic phenomena [45]. Although,
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different novel localized wavepackets signifying similaritons, fractional-transform solitons,

and Möbius-transform solitons and their dynamical behaviors are quiet explored for this

dynamical system [46, 47, 48, 49], a formal study of MI does not exist so far. In this work

we study the MI in case of externally driven NLSE. We explore various regions where MI

is possible for self-focussing as well as self-defocussing nonlinearity. We observed that for

self-defocussing case MI does not exist for negative source term coefficient. However for

self-focussing case MI exist for both positive and negative source term coefficients. We

also observed that in self-focussing as well as self-defocussing nonlinearity, MI varies with

variation in both nonlinear coefficient and source term coefficient.

4.3.2 Analysis of MI for NLSE, phase locked to an external

source

NLSE phase locked to an external source is expressed as

i
∂u

∂z
+
β2
2

∂2u

∂T 2
+ Γ|u|2u = Φ ei(δZ), (4.17)

where first term is time evolution term, β2 is the coefficients of group velocity dispersion

term, Γ is the coefficient of nonlinear term and Φ is the coefficient of source term. In

normalized units Z = β2z, γ = Γ
β2

and ϕ = Φ
β2
, the Eq. (4.17) reduce to

i
∂u

∂Z
+

1

2

∂2u

∂T 2
+ γ|u|2u = ϕ ei(δZ). (4.18)

The steady state solution of Eq. (4.18) is given by

u =
√
P0 e

i(δZ), (4.19)

where P0 is the initial power and δ is the phase shift. on substituting Eq. (4.19) in Eq.

(4.18) we obtain

δ = γP0 −
ϕ√
P0
, (4.20)

If the continuous wave solution is slightly perturbed from steady state,

u =
(√

P0 + a(Z, T )
)
ei(δZ), (4.21)
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where a(Z, T ) is the perturbation such that a < 1. On substituting Eq. (4.21) in Eq.

(4.18) we obtain the following evolution equation for the perturbation:

i
∂a

∂Z
+

1

2

∂2a

∂T 2
+ γP0(a+ a∗) +

ϕ a√
P0

= 0. (4.22)

This equation can be easily solved in frequency domain. However, because of the a∗ term,

the Fourier components at frequencies Ω and −Ω are coupled. Thus we should consider

its solution in the form

a(Z, T ) = a1 exp[i(KZ − ΩT )] + a2 exp[−i(KZ − ΩT )], (4.23)

where K is the longitudinal wave number and Ω is the frequency of the perturbation. on

substituting Eq. (4.23) in Eq. (4.22) we obtain

(
−Ka1 + γa20a1 + γa20a2 +

ϕ

a0
a1 −

β

2
Ω2a1

)
exp[i(KZ − ΩT )]

+

(
Ka2 + γa20a2 + γa20a1 +

ϕ

a0
a2 −

β

2
Ω2a2

)
exp[−i(KZ − ΩT )], (4.24)

separation the coefficients of exp[i(KZ − ΩT )] and exp[−i(KZ − ΩT )], we get

−Ka1 + γa20a1 + γa20a2 +
ϕ

a0
a1 −

β

2
Ω2a1 = 0,

Ka2 + γa20a2 + γa20a1 +
ϕ

a0
a2 −

β

2
Ω2a2 = 0, (4.25)

we can write Eq. (4.25) in the matrix form as
−k +A11 γa20

γa20 K +A11




a1

a2

=


0

0

 ,

where A11 = γa20 +
ϕ
a0

− β
2Ω

2, hence


−k +A11 γa20

γa20 K +A11

=0,
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from above matrix, we obtain dispersion relation for K which is given by

K = ±1

2

√
Ω4 − 4

(
γ
√
P0 +

ϕ√
P0

)
Ω2 +

4ϕ2√
P0

+ 8ϕγ
√
P0, (4.26)

K = ±1

2

√(
Ω2 − 2ϕ√

P0

)(
Ω2 − 2ϕ√

P0
− 4γP0

)
. (4.27)

The steady-state solution becomes unstable if K becomes imaginary, because then per-

turbation grows exponentially. The general expression of the MI gain is

g(Ω) = 2Im(K) =

√
−
(
Ω2 − 2ϕ√

P0

)(
Ω2 − 2ϕ√

P0
− 4γP0

)
. (4.28)

It is clear from the gain expression that MI gain depends upon source term coefficient

ϕ, nonlinear term coefficient γ and the perturbed normalized frequency Ω. The region

where MI is possible for both self-focussing and self-defocussing nonlinearity is shown in

Fig. (4.7). It is clear from Fig. 4.7 that MI is possible for all set of values ϕ and γ except

when ϕ and γ both are less than zero simultaneously. It is instructive to note that the

solitary wave solutions obtained for NLSE phase locked to an external source in the ref.

[35], also lies in the same range of k and g, which corresponds to ϕ and γ respectively in

our work. The analysis of this work [35] shows that solitary waves solution for NLSE with

an external source are possible everywhere except where k < 0 and g < 0 simultaneously.

On the basis of this, we have shown the variation of MI gain with frequency in Fig.(4.8),

Fig.(4.9) and Fig.(4.10).

4.3.3 Special cases

For Self-defocussing nonlinearity (γ < 0)

Case-I: For ϕ > 0

Fig. (4.8) shows the variation of MI with nonlinearity γ and source terms coefficient

ϕ for self-defocussing nonlinearity. It is clear from Fig. 4.8(a)–4.8(d) that as the value of γ

decreases from −0.009 to −0.015, the amplitude of gain profile increases for ϕ = 20, 25, 30.

For ϕ = 20 splitting occurs at γ = −0.009, for ϕ = 25 and ϕ = 30, the splitting of

side-band occurs at γ = −0.012. Analysis shows that with increase in nonlinearity, gain
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Figure 4.7: Region where MI is possible for P0 = 100 and for set of range of ϕ, γ

and Ω.

increases however the increase in source term coefficient leads to the shifting of side-bands

towards higher frequency side.

For Self-focussing nonlinearity (γ > 0)

Case-I: For ϕ > 0

Fig. (4.9) shows the variation of MI gain with γ for different values of ϕ for self-

focussing nonlinearity. It is clear from Fig. 4.9(a)–4.9(d) that as the value of γ increases

from 0.005 to 1, the amplitude of gain profile increases for all values of ϕ. When γ = 1

the gain profile for all values of ϕ coincides and splitting reduces. We analyzed that for

self-focussing nonlinearity with increase in value of nonlinearity MI gain increases. We

further observed that at lower value of nonlinearity as the source parameter increases MI

side-bands shifts towards higher frequency side. With increase in value nonlinearity the

impact of source parameter on MI reduces and at higher value the MI sideband coincides

for all values of source parameter.

Case-II: For ϕ < 0
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Figure 4.8: Gain profile of MI for (a)γ = −0.009 (b)γ = −0.01 (c)γ = −0.012

(d)γ = −0.015 respectively at initial power of P0 = 100.

Fig. (4.10) shows the variation of MI gain with γ for different values of ϕ for self-

focussing nonlinearity. It is clear from Fig. 4.10(a)–4.10(d) that as the value of γ increases

from 0.005 to 10, the amplitude of gain profile increases for all values of ϕ. Hence it is

clear that at lower value of nonlinear parameter as the value of source term coefficient

increases, MI sidebands shift towards higher frequency side. However for higher value of

nonlinearity, the effect of source term coefficient on MI reduces and MI side band for all

value of ϕ overlap.

4.3.4 Conclusion

In conclusion, a number of interesting features have emerged from the study of MI of

NLSE driven with external source. Analysis shows that MI exist for all regions except
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Figure 4.9: Gain profile of MI for (a)γ = 0.005 (b)γ = 0.01 (c)γ = 0.1 (d)γ = 1

respectively and at initial power of P0 = 100.

the region where nonlinearity is self-defocussing in nature and source term coefficient is

negative. The results of ref. [35] indicate that soliton-like solutions are also possible

for all parametric regime except the region where nonlinearity and source term both are

negative. This may be the answer for well established question that whether splitting

of MI side-bands results into the solitons formation. It is observed that for all cases MI

gain increases with increase in nonlinearity. For self-defocussing case, with increase in

nonlinearity, MI gain increases and increase of source term coefficient leads to shifting

of sidebands towards higher frequency side. We further observed that for lower value

of self-focussing nonlinearity and positive source term coefficient, with increase in source

term coefficient, MI side-bands shifts towards higher frequency side. It is further observed

that with increase in value nonlinearity the impact of source parameter on MI reduces
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Figure 4.10: Gain profile of MI for (a)γ = 0.005 (b)γ = 0.1 (c)γ = 1 (d)γ = 10

respectively at initial power P0 = 100.

and at higher nonlinear coefficient the MI sideband coincides for all values of source term

coefficients. For self-focussing nonlinearity and negative source term coefficient, at lower

value of nonlinear parameter as the value of source term increases, MI sidebands shift

towards higher frequency side. However with increase in value of nonlinearity, the effect

of source parameter on MI reduces and for high nonlinearity, MI side band for all value of

source parameter overlap.

The work discussed above in submitted for publication as regular article in Journal

of Mathematics and Computers with Applications [50].
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Chapter 5

Summary and conclusion

This thesis deals with the study of solitary wave or soliton-like solutions for NLSE. In this

thesis we have investigated MI for twin-core fiber which is physical system of considerable

interest. MI is responsible for soliton pulses in different nonlinear media. We have illus-

trated the properties of negative index materials (NIMs) and studied the solitary wave

solutions for higher order NLSE, NLSE with source and NLSE in coupled mode. We have

also illustrated the the solitary wave solutions for HNLSE for ordinary nonlinear materials

and also discussed the impact of source term on MI in case of NLSE with source.

In Chapter 2, is divided into three parts. In first section we have considered the wave

propagation in Negative refractive index materials. There has been considerable inter-

est, experimentally as well as theoretically, in the use of NIMs in optical communication

systems, as these are artificially designed materials so we have flexibility of controlling

the behavior of these materials. In first section we presented periodic and solitary waves,

propagating through NIMs [Sharma et al., J. Mod. Opt. 60 (2013) 836]. It has been

accomplished by first by assuming an ansatz for the NLSE containing higher order effects

like quintic nonlinearity, self-steepening and nonlinear dispersive terms which governs the

pulse propagation through NIMs. We find the conditions for which the assumed ansatz

satisfies the equation. In this we have explored dark and bright solitary wave solutions

for some constraints. The evolution of dark solitary waves is shown for specific range of

normalized frequency while the existence of bright solitary waves are possible under some
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conditions on model parameters which can be achieved through the structural changes in

NIMs. We further studied fractional-transform solutions, containing periodic, hyperbolic

and cnoidal solitary wave solutions for GNLSE, in absence of quintic and nonlinear dis-

persion terms. In second section we have studied solitary wave solutions for NLSE with

source [Sharma et al., AIP Conf. Proc. 1536 (2013) 717]. In this case we have obtained

the periodic and solitary wave solution by using ansatz method. Third section deals with

study of chirped pulses in NIMs. We have considered the coupled pulse propagation equa-

tion in NIMs in the presence of electric and magnetic self-steepening effects, and obtained

exact chirped soliton and periodic solutions for this model for normal as well as anomalous

dispersion. For the normal dispersion, we obtained the bright and dark soliton solutions

having unique velocity but different initial chirp for same normalized frequency; on the

other hand for the anomalous dispersion, it possesses the fractional solutions having differ-

ent velocity for a particular normalized frequency. Moreover there is also a possibility of

obtaining the periodic nonlinear waves in NIMs in anomalous dispersion regime. We have

plotted these solutions for different normalized frequencies. It is shown that nonlinear

chirp associated with each of these solutions is directly proportional to the intensity of the

pulse and saturates at some finite value as the retarded time approaches its asymptotic

value.

In Chapter 3, we studied the MI for a twin-core fibers in the presence of higher order effects

such. We considered CNLSE containing higher order terms such as quintic nonlinearity,

self-steepening (SS), third order dispersion (TOD), forth order dispersion (FOD) and cou-

pling coefficient dispersion (CCD) term. We have applied linear stability analysis for the

study of modulation instability. For study of MI we perturb the steady state solution of

coupled equation slightly by applying weak perturbation. Then the resultant equation is

linearized in perturbation term. We write perturbation term as a sum of positive exponen-

tial and negative exponential term in the resultant equation. Then a dispersion relation

is obtained from the resultant equation. Imaginary part of dispersion relation will give

gain expression for MI. It is observed that impact of TOD is minimal on MI gain. We

have discussed the characteristic of three kinds of MI—spatial, temporal, spatiotemporal.
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It is found that the spatial MI gain is independent of SS, FOD, CCD terms. We have

further investigated the impact of quintic nonlinearity, CCD, FOD, SS on temporal MI

gain separately. It is observed that all these terms play vital role in MI gain and none of

the terms can be ignored. A judicious choice of all these parameters provides us a freedom

to control the MI gain spectrum. To sum up, the MI in twin-core fiber occurs for all

combinations of nonlinearity and dispersion. Since the solitons and MI occur in the same

parameter regime, this detailed MI analysis suggests the generation of ultrashort pulses

in twin-core optical fibers for different parameter domains.

Chapter 4 is divided into two parts. In first part, we studied the GNLSE with non-Kerr

terms [Sharma et al.,J. Nonl. Opt. Phys. Mat. 23 (2014) 3], which is short wave equa-

tion. We demonstrated that the non-Kerr terms induces different types of bright and

dark solitons, which are subjected to constraint relations among the parameters. These

femtosecond pulses are useful to increase the capacity of carrying information in order to

make ultra fast communication which is useful for trans-continental and trans-ocean. In

second part we have investigated the MI for NLSE with source term by using linear sta-

bility analysis. A number of interesting features have emerged from this study. Analysis

shows that MI exist for all regions except the region where nonlinearity is self-defocussing

in nature and source term coefficient is negative. It is observed that for all cases gain

increases with increase in nonlinearity. For self-defocussing case, with increase in non-

linearity, MI gain increases and increase of source term coefficient leads to shifting of

sidebands towards higher frequency side. We further observed that for lower value of self-

focussing nonlinearity and positive source term coefficient, with increase in source term

coefficient, MI side-bands shifts towards higher frequency side. It is further observed that

with increase in value nonlinearity the impact of source parameter on MI reduces and at

higher nonlinear coefficient the MI sideband coincides for all values of source term coeffi-

cients. For self-focussing nonlinearity and negative source term coefficient, at lower value

of nonlinear parameter as the value of source term increases, MI sidebands shift towards

higher frequency side. However with increase in value of nonlinearity, the effect of source

parameter on MI reduces and for high nonlinearity, MI side band for all value of source
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parameter overlap.

The work described in this thesis has led to some interesting results of wave propagation

in the field of nonlinear optics regarding study of MI in the context of twin-core fiber and

regarding solitary wave solutions in the context of NIMs, ordinary nonlinear materials.

These solutions may be useful in communication networks and other optical processes.

The study of propagation of waves in NIMs will be useful to understand the structure and

fabrication of NIMs.



List of publications

Papers in refereed journals

1. V. K. Sharma, A. Goyal, T. S. Raju and C. N. Kumar, Periodic and solitary wave

solutions for ultrashort pulses in negative-index materials, Journal of Modern

Optics 60 (2013) 836–840.

2. A. Goyal, V. K. Sharma, T. S. Raju and C. N. Kumar, Chirped double-kink and

fractional-transform solitons in an optical gain medium with two-photon absorption,

Manuscript submitted to Journal of Modern Optics 61 (2013) 315–321.

3. V. K. Sharma and A. Goyal, Ultrashort double-kink and algebraic solitons of gen-

eralized nonlinear Schrödinger equation in the presence of non-Kerr terms, Journal

of nonlinear Optical physics and materials 24 (2014) 1450034.

4. V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar and P. K. Panigrahi, Spatial,

temporal, and spatio-temporal modulational instabilities in twin-core optical fibers,

Submitted to Journal of Optical Fibre Technology for publication as artical

(2014).

5. V. K. Sharma, R. Gupta, A. Goyal, C. N. Kumar, A. K. Sarma, Chirped soliton-

like solutions of coupled generalized nonlinear Schrödinger equation for pulse prop-

agation in negative index material, Submitted to Journal of Modern Optics for

publication as an article (2014).

6. V. K. Sharma, A. Goyal, T. S. Raju, C. N. Kumar, Study of Modulation instability

for nonlinear Schrödinger equation phase locked with an external source, Submitted

to Journal of Mathematics and computers with applications for publication

as an article (2014).

Conference papers in refereed journals

1. A. Goyal, V. K. Sharma and C. N. Kumar, Optical solitons supported by lo-

calized gain in the presence of two-photon absorption, International Conference on

Fiber Optics and Photonics, OSA Technical Digest (online) (Optical Society of

America, 2012).

2. V. K. Sharma, A. Goyal, C. N. Kumar and J. Goswamy, Travelling wave solutions

in negative index materials in the presence of external source, AIP Conference

Proceedings 1536 (2013) 717.

3. V. K. Sharma, K. K. De, A. Goyal, Solitary wave solutions of higher-order nonlin-

ear Schrödinger equation with derivative non-Kerr nonlinear terms, IEEE Xplore

Conference Proceedings (2014) 1-2 DOI 10.1109/WRAP.2013.6917712.

127



128 Chapter 5

Papers in conferences and workshops

1. A. Goyal, V. Sharma, J. Goswamy and C. N. Kumar, Soliton-like solutions for

higher order nonlinear Schrödinger equation, 6th Chandigarh Science Congress,

Panjab University, Feb. 26-28, 2012.

2. R. Gupta,V. K. Sharma and C. N. Kumar,Study of modulation instability in nega-

tive index metamaterials governed by cubic-quintic nonlinear Schrödinger equation,

7th Chandigarh Science Congress, Panjab University Chandigarh, Feb. 26-28,

2013.



Selected

Reprints/Preprints

129




