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Modern applications of the chiral anomaly

» 1. Quantum wires

v

2. Quantum Hall effect

\4

3. Hawking effect
» 4. Chiral magnetic effect

5. Chiral vortical effect

v

» 6. Anomalous hydrodynamics

3 /24



Relativistic Fluid Dynamics

» Necessity:
» Large velocity (comparable to light) of macroscopic flow.

» Microscopic motion of fluid particles is large.
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Relativistic Fluid Dynamics

» Necessity:

v

Large velocity (comparable to light) of macroscopic flow.

» Microscopic motion of fluid particles is large.

» Equation of Motion:

,T! = 0

» Conservation of Energy-momentum tensor.

» For a charged fluid this is supplemented with

o J" = 0
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Constitutive Relations:

» Additional relations expressing E.M tensor/Charge in terms of the
basic fluid variables like velocity, temperature and chemical potential.
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Constitutive Relations:

» Additional relations expressing E.M tensor/Charge in terms of the
basic fluid variables like velocity, temperature and chemical potential.

» Ideal Fluid Relations:

Tul/ = (E + P) Upy + ’PT];LV s

Jo = nu,

» ¢ — energy density, P — pressure, n — charge density,
Nuw — metric, u, — fluid velocity normalised as u*u, = —1.

» Extra terms have to be included in the non ideal case to include effects
of dissipation (like viscosity).
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Two Approaches

» Landau type approach:
Constitutive relations are derived to ensure positivity of entropy and
hence compatibility with a local version of the second law of
thermodynamics. Also, it satisfies the appropriate equations of motion.
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Two Approaches

» Landau type approach:
Constitutive relations are derived to ensure positivity of entropy and
hence compatibility with a local version of the second law of
thermodynamics. Also, it satisfies the appropriate equations of motion.

» Derivative expansion approach:
Effective action is expressed as a series in powers of derivatives acting
on fluid variables (like velocity). This is the large wavelength
approximation.
Likewise, the constitutive relations are also expressed as a power series.

Results from these approaches agree although a general proof of this
statement is missing.
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Hydrodynamics in presence of gauge/gravity

Turn on a gauge field (A,) and gravity (metric g, ).

» Changes

Replace ordinary derivative by covariant derivative in the conservation
laws

D,T¢ =0, D,J"=0;

Modify constitutive relations:

Depend on gauge and/or diffeomorphism invariant combinations of the
fields (Au, guv)-

What happens if anomalies are present?
D,T!" #0, D,J" #£0;

A hydrodynamic (derivative) expansion is usually adopted
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Review on anomalies

» Standard definition

Anomaly is the breakdown of a classical symmetry upon quantization.
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Review on anomalies

» Standard definition

Anomaly is the breakdown of a classical symmetry upon quantization.

» Example:
QED

oI =0,  9,J" =0;

Both vector/axial vector currents are conserved. Results follow on
using the classical equation of motion(Noether’s theorem).

More refined calculation yields,

1
BHJ“ = 0, 8#(]“5 = @EuuaﬂF“VFaﬁ;
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Infinities and Anomalies

Anomaly is the breakdown of formal manipulations(ignoring infinities)
leading to a modified conservation law.
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Infinities and Anomalies

Anomaly is the breakdown of formal manipulations(ignoring infinities)
leading to a modified conservation law.

» Same example (QED):

Bu” (2) = B ($7"0) =0 Fv + DGy
» Classical equations of motion
Fo=mp, 09 = —mi
Oud" () = mp(x)y(x) — mp(z)P(z)
=0
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Infinities and Anomalies

Anomaly is the breakdown of formal manipulations(ignoring infinities)
leading to a modified conservation law.

» Same example (QED):

Ou" (@) = 0, (") = DY+
» Classical equations of motion
— _
Fv=my, §8 =-mi
BuJ" (x) = mp(x)p(z) —m(x)P(z)
=0
Allowed only if ¥ (x)(z) is not infinity!

» Fields at identical space-time points not well defined and could lead to
infinities.
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Infinities and Anomalies

Anomaly is the breakdown of formal manipulations(ignoring infinities)
leading to a modified conservation law.

» Same example (QED):

_ _ _4=
Oul (&) = 0 (59) =GB+ DY
» Classical equations of motion
3 _4=
1/1 = mwa 7[} @ = -
BuJ" (x) = mp(x)p(z) —m(x)P(z)
=0
Allowed only if ¥ (x)(z) is not infinity!
» Fields at identical space-time points not well defined and could lead to

infinities.
_ d4p PN C )
T (z - [ =2E
O
» for x=y IW— — divergent at p — oo
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Chiral anomaly

Anomaly in the chiral current

ofpr (352)1] -

No regularisation exists for which A =0
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Chiral anomaly

Anomaly in the chiral current

ofpr (352)1] -

No regularisation exists for which A =0

» Covariant and consistent anomaly

» Current transforming covariantly under a gauge transformation is
called covariant current.
Anomaly of a covariant current also transforms covariantly —
Covariant anomaly.
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Chiral anomaly

Anomaly in the chiral current

ofpr (352)1] -

No regularisation exists for which A =0

» Covariant and consistent anomaly

» Current transforming covariantly under a gauge transformation is
called covariant current.
Anomaly of a covariant current also transforms covariantly —
Covariant anomaly.

» Current defined from the variation of an effective action is called
consistent current.

Anomaly of consistent current is consistent anomaly (satisfies W-Z
consistency condition).

Covariant and consistent expressions are complementary, related by
local polynomials.
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Example from 2 dimensions(chiral gauge anomaly)

Covariant anomaly

1 v
BMJM = EGI—LVF”

» Effective action

WI[A] = /:dg/d2x Ap(x) "9 ()

Formal definition is made sensible by specifying a regularisation for
JH(9) ().
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Example from 2 dimensions(chiral gauge anomaly)

Covariant anomaly

1
Oul" = e

» Effective action

Al = /:dg/d2x Ap(x) "9 ()

Formal definition is made sensible by specifying a regularisation for
JH(9) ().
» Choose a gauge invariant regularisation

1
WI[A—-0a] = / dg/d%:(Au—B#a) JH)
0
2 W = 2 1(9)
/daz(@uéAH)a = /dg/dma OuJ
oW o uv\ _ i wv
8”514“ N / dg (4 v ) N 87r6’wF

This is the consistent anomaly.
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Example continued

Covariant: EWF K. Consistent: eWF kY

» For any d=2n dlmensmns

Consistent anomaly = Covariant anomaly

n+1
Follows from homogeneous nature of anomaly
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Example continued

Covariant: eWF k¥, Consistent: EWF kY

» For any d=2n dimensions

Consistent anomaly = Covariant anomaly

n+1
Follows from homogeneous nature of anomaly

» Relation between covariant and consistent currents

ov ons 1 14
Jov = glemet 4 TemA
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Example continued

Covariant: eWF k¥, Consistent: EWF kY

» For any d_2n dimensions

Consistent anomaly = +1 Covariant anomaly
Follows from homogeneous nature of anomaly

» Relation between covariant and consistent currents

ov ons 1 14
Jov = glemet 4 TemA

» Extra piece (local polynomial) does not contribute to the effective

action.
1 ) 1
- nv —
/0 dg/dmAM(Zm)e A, =0

W is therefore unaffected by the regularisation prescription.
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Gravitational anomaly(2 dimensions)

» Occurs in (4n-2) dimension. (2,6,10,..)

» For a usual (non-chiral) theory, one can trade between the conformal
(trace) and general coordinate (diffecomorphism) symmetries.

TH =0, V, T #0 OR T #0, V, TV =0
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Gravitational anomaly(2 dimensions)

» Occurs in (4n-2) dimension. (2,6,10,..)

» For a usual (non-chiral) theory, one can trade between the conformal
(trace) and general coordinate (diffecomorphism) symmetries.

TH =0, V, T #0 OR T #0, V, TV =0

» For a chiral theory, both conformal and general coordinate invariances
are broken

T 40, VT #0

» As in the gauge theory, here also there are covariant and consistent
expressions for the diffeomorphism anomaly.
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Anomalous Ward identities

» Diffeomorphism anomaly:

V,T" = F'J' + Cue"V,R,
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Anomalous Ward identities

» Diffeomorphism anomaly:

V,T" = F'J' + Cue"V,R,

» Conformal anomaly:

» Gauge anomaly:

V' = C.dFp.

Follows from purely algebraic arguments. J*, T"" are covariant
current/stress tensor, R is the Ricci scalar, Fj,, = V, A, — V, A, is
field strength
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General set up(14+1 dimensional static space-time)

» Metric:

ds® = —e2Mg® 1 g11(r)dr2
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General set up(14+1 dimensional static space-time)

» Metric:

ds® = —e2Mg® 1 g11(r)dr2

» Null Coordinates: u=t—7r*, v=t+7r"

dr e’

dr* g11

» New form of metric

ds® = —%e% (dudv + dvdu)

edo

» Notation: g = detgu, = — -

» Antisymmetric tensor:

20

_ (&
€uv =V —G€ur = TG[JJJ

€uv = —€pu = 1
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Passage to hydrodynamics

» Introduce the velocity u" of the time independent equilibrium fluid
fields, satisfying v*u, = — 1 (comoving frame)

' =e7"(1,0), up = —e”(1,0), (w=t,r)
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Passage to hydrodynamics

» Introduce the velocity u" of the time independent equilibrium fluid
fields, satisfying v*u, = — 1 (comoving frame)

' =e7"(1,0), up = —e”(1,0), (w=t,r)

» Null Coordinates

o)
2

Up = — (17 1)7 ut = e—o’(?")(L 1)7 (M = U, ’U)

» Dual vector

eo(r)
U, = Euu= 5 (1,-1)
ur = 670“)(17 -1), (p=u,v)

normalised as @/'a, = 1
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Passage to hydrodynamics

» Introduce the velocity u" of the time independent equilibrium fluid
fields, satisfying v*u, = — 1 (comoving frame)

' =e7"(1,0), up = —e”(1,0), (w=t,r)

» Null Coordinates

o)
2

Up = — (17 1)7 ut = e—o’(?")(L 1)7 (M = U, ’U)

» Dual vector

oo ()
U, = Euu= 5 (1,-1)
ur = 670“)(17 -1), (p=u,v)
normalised as @/'a, = 1
» Chiral vector
Uy =up — Uy = —€uu’’
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Passage to hydrodynamics

» Chemical potential

p=Ae(r)/v/—goo = A¢(r)e””
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Passage to hydrodynamics

» Chemical potential

= Ai(r)/v/=goo = Ai(r)e””
» U(1) gauge field

Ay = (Ad(r),0)
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Passage to hydrodynamics
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Passage to hydrodynamics

» Chemical potential

= Ai(r)/v/=goo = Ai(r)e””
» U(1) gauge field

A = (Ae(r),0)

» Temperature

T = T()eio-

where Tj is the equilibrium temperature

» Ricci scalar

1

R=—(g110 — 29110 — 2910 ) = —2u"V"V,u,
911
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Constitutive relations

» Energy-momentum Tensor:

Ty = [C1T? = Cu (u*VPVsua) + 1% (35 = Cs)] g
+ [QCw (uo‘Vﬁ — uﬁva) Vaug + 201T? + 244> (% — CS)] Up Uy
—[2Cy (u*VP —uPV*) Vaug + CoT? + Copr®] (uptiv + Gpun)
+{ (€ -2(C+P)Cs) L+ (M — C.(C + P) ) }(2uuuy+gw)

+{ 2(C + P)C,) Tlo,u—l—(%—CS(C—I—P)Z)W}(uuﬂy—i—ﬂuuy)
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Constitutive relations

» Energy-momentum Tensor:
Ty = [C1T? = Cw (u*VPVua) + 1 (5=
+ [QCw (uo‘Vﬁ — uﬁva) Vaug + 201T? + 244> (% — CS)] Up Uy
—[2Cy (u*VP —uPV*) Vaug + CoT? + Copr®] (uptiv + Gpun)
+{ (€ -2(C+P)Cs) L+ (M — C.(C + P) ) }(2uuuy+gw)

+{ 2(C + P)Cs) ou+ (SF = Cs(C+ P) )j}(uuﬂmtﬂuuu)

= Cs)] guw

» Gauge current
- M C T
= —2C, £ =2 P
J C,u(uu+1m)+7T1LMJr(7T (Cc+ )C)T
P T
Z_9 P)C, | =
-I—(ﬂ_ (c+ )C)T

Here, C1, C2,P and C are constants.
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Derivative expansion approach

» Covariant stress tensor

T = eu'u” 4+ Putu” + 0 (v u” + u"a”)

» General form of a symmetric second rank tensor constructed from u,
and .
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and .
e = CIT? +Cy (W'V*"V,u) 4 2C, (u*VY —u"V*) V u,
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Derivative expansion approach

» Covariant stress tensor

T = eu'u” 4+ Putu” + 0 (v u” + u"a”)

» General form of a symmetric second rank tensor constructed from u,

and .
e = CIT? +Cy (W'V*"V,u) 4 2C, (u*VY —u"V*) V u,
P = CT°—Cy W' V'V,u,)
0 = —CoT?—2C, (u"V’ —u’V*")V,u,

» (7 and C2 are undetermined parameters expressed in terms of the
normalisation factors (Cy, Cy) of the trace/diffeomorphism anomalies.
Non-trivial relations,

C1 = 4#201”, 02 = 87I'2Cg
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Israel-Hartle-Hawking condition

» Defined by taking T}, /J, in Kruskal coordinates, corresponding to
both outgoing and ingoing modes, as regular, near the horizon.
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» Implies Tyw, Tvv, Ju, J» — 0 near the horizon

» Horizon (r = ro) defined as €*7|,, = =0

sl
» Fixes all the undetermined constants:

C and P fixed from J,, J, = 0

For J, -0, P—C =puel,, = 0
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Israel-Hartle-Hawking condition

» Defined by taking T}, /J, in Kruskal coordinates, corresponding to
both outgoing and ingoing modes, as regular, near the horizon.

» Implies Tyw, Tvv, Ju, J» — 0 near the horizon

» Horizon (r = ro) defined as €*7|,, = =0

sl
» Fixes all the undetermined constants:
C and P fixed from J,, J, = 0
For J, -0, P—C =puel,, = 0
For J, -0, P+C=—pue’l,, = 0
P=C=0;

» (1 and Cs fixed from the condition on stress tensor.

Cl = 47T2Cw, Cz = 87‘(’2Cg7
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Response parameters and anomaly coefficients

>
Ju = =2Csp(up + 1ip) + %Uu
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Response parameters and anomaly coefficients

>
Ju = =2Csp(up + 1ip) + %Uu

» In the hydrodynamic expansion approach

or

_ as a2
JH:*QCS,LLUH‘F (a T72282+?S4)u‘u,

> S2, S4 are certain combinations of gauge field that occur in the second
order expansion, and,

P =Tpo(£)
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Response parameters and anomaly coefficients

>
Ju = =2Csp(up + 1ip) + %uu

» In the hydrodynamic expansion approach

0P  a}

- _ i o G2 2
Jy = —2Cspty, + (8M T2 Sa + T S4)uu

> S2, S4 are certain combinations of gauge field that occur in the second
order expansion, and,

P =Tpo(£)

» Comparison yields

@:T2%: _QCSJ'_l ; a2:a/2:0
ou ou T
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Final Expressions

>

1 u? .
po = (; — C’s) T2 + Q(int.const)
» In the absence of gauge field
po = Cy = 4n°C,,

» General solution:
2
po=4m*Cu + (7 = Cs) 4o
The other relation is unchanged,
» Cy = 87r2€g
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Final Expressions

>

1 u? .
po = (; — C’s) T2 + Q(int.const)

In the absence of gauge field

po = C1 = 47°C,,
General solution:
po=4mC + (L = C) 25
The other relation is unchanged,

Co = 87%C,

Consistency check

The constitutive relation for 7, agrees with the form obtained by the
derivative expansion provided the above identifications are used.
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Conclusions

» Hydrodynamics governed by its eq. of motion (Conservation laws)
supplemented by constitutive relations expressing stress tensor/charge
in terms of fluid variables like velocity,temperature etc.
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Conclusions

» Hydrodynamics governed by its eq. of motion (Conservation laws)
supplemented by constitutive relations expressing stress tensor/charge
in terms of fluid variables like velocity,temperature etc.

» Anomalous conservation laws modify such constitutive relations.

» Usual approach employs the gradient expansion scheme. Yields results
in two/four dimensions etc.

» In d=2, exact results are obtained since the metric is conformally flat.

» We have given exact constitutive relations in d=2 in the presence of
both gauge and gravitational anomalies. Also, the connection between
response parameters and anomaly coefficients was given.

» Apart from providing an alternative viewpoint, we have given new
results in the context of simultaneous gauge and gravitational
anomalies.

» Only covariant anomalies were used.
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