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Modern applications of the chiral anomaly

I 1. Quantum wires

I 2. Quantum Hall effect

I 3. Hawking effect

I 4. Chiral magnetic effect

I 5. Chiral vortical effect

I 6. Anomalous hydrodynamics
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Relativistic Fluid Dynamics

I Necessity:

I Large velocity (comparable to light) of macroscopic flow.

I Microscopic motion of fluid particles is large.

I Equation of Motion:

∂µT
µ
ν = 0

I Conservation of Energy-momentum tensor.

I For a charged fluid this is supplemented with

∂µJ
µ = 0
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Constitutive Relations:

I Additional relations expressing E.M tensor/Charge in terms of the
basic fluid variables like velocity, temperature and chemical potential.

I Ideal Fluid Relations:

Tµν = (ε+ P)uµν + Pηµν ,

Jµ = nuµ

I ε→ energy density, P → pressure, n→ charge density,

ηµν → metric, uµ → fluid velocity normalised as uµuµ = −1.

I Extra terms have to be included in the non ideal case to include effects
of dissipation (like viscosity).
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Two Approaches

I Landau type approach:
Constitutive relations are derived to ensure positivity of entropy and
hence compatibility with a local version of the second law of
thermodynamics. Also, it satisfies the appropriate equations of motion.

I Derivative expansion approach:
Effective action is expressed as a series in powers of derivatives acting
on fluid variables (like velocity). This is the large wavelength
approximation.
Likewise, the constitutive relations are also expressed as a power series.

Results from these approaches agree although a general proof of this
statement is missing.
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Hydrodynamics in presence of gauge/gravity

Turn on a gauge field (Aµ) and gravity (metric gµν).

I Changes

Replace ordinary derivative by covariant derivative in the conservation
laws

DµT
µ
ν = 0, DµJ

µ = 0;

Modify constitutive relations:

Depend on gauge and/or diffeomorphism invariant combinations of the
fields (Aµ, gµν).

What happens if anomalies are present?

DµT
µ
ν 6= 0, DµJ

µ 6= 0;

A hydrodynamic (derivative) expansion is usually adopted
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Review on anomalies

I Standard definition

Anomaly is the breakdown of a classical symmetry upon quantization.

I Example:

QED

∂µJ
µ = 0, ∂µJ

µ5 = 0;

Both vector/axial vector currents are conserved. Results follow on
using the classical equation of motion(Noether’s theorem).

More refined calculation yields,

∂µJ
µ = 0, ∂µJ

µ5 =
1

16π2
εµναβF

µνFαβ ;
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Infinities and Anomalies

Anomaly is the breakdown of formal manipulations(ignoring infinities)
leading to a modified conservation law.

I Same example (QED):

∂µJ
µ (x) = ∂µ

(
ψ̄γµψ

)
= ψ̄
−→
/∂ ψ + ψ̄

←−
/∂ ψ

I Classical equations of motion
−→
/∂ ψ = mψ, ψ̄

←−
/∂ = −mψ̄

∂µJ
µ (x) = mψ̄(x)ψ(x)−mψ̄(x)ψ(x)

=0

Allowed only if ψ̄(x)ψ(x) is not infinity!

I Fields at identical space-time points not well defined and could lead to
infinities. 〈

T ψ̄(x)ψ(y)
〉

=

∫
d4p

(2π)4
eip.(x−y)

/p−m

I for x=y
∫

d4p

(2π)4
1

/p−m → divergent at p→∞
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Chiral anomaly

Anomaly in the chiral current

∂µ

[
ψ̄γµ

(
1± γ5

2

)
ψ

]
= A

No regularisation exists for which A = 0

I Covariant and consistent anomaly

I Current transforming covariantly under a gauge transformation is
called covariant current.
Anomaly of a covariant current also transforms covariantly →
Covariant anomaly.

I Current defined from the variation of an effective action is called
consistent current.

Anomaly of consistent current is consistent anomaly (satisfies W-Z
consistency condition).

Covariant and consistent expressions are complementary, related by
local polynomials.
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Example from 2 dimensions(chiral gauge anomaly)

Covariant anomaly

∂µJ
µ =

1

4π
εµνF

µν

I Effective action

W [A] =

∫ 1

0

dg

∫
d2x Aµ(x)Jµ(g)(x)

Formal definition is made sensible by specifying a regularisation for
Jµ(g)(x).

I Choose a gauge invariant regularisation

W [A− ∂α] =

∫ 1

0

dg

∫
d2x (Aµ − ∂µα) Jµ(g)

∫
d2x

(
∂µ
δW

δAµ

)
α =

∫ 1

0

dg

∫
d2x α(x) ∂µJ

µ(g)

∂µ
δW

δAµ
=

∫ 1

0

dg
( g

4π
εµνF

µν
)

=
1

8π
εµνF

µν

This is the consistent anomaly.
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Example continued

Covariant: 1
4π
εµνF

µν ; Consistent: 1
8π
εµνF

µν

I For any d=2n dimensions

Consistent anomaly = 1
n+1

Covariant anomaly

Follows from homogeneous nature of anomaly

I Relation between covariant and consistent currents

JCovµ = JConstµ +
1

4π
εµνA

ν

I Extra piece (local polynomial) does not contribute to the effective
action. ∫ 1

0

dg

∫
d2x Aµ

(
1

4π

)
εµνAν = 0

W is therefore unaffected by the regularisation prescription.
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Gravitational anomaly(2 dimensions)

I Occurs in (4n-2) dimension. (2,6,10,..)

I For a usual (non-chiral) theory, one can trade between the conformal
(trace) and general coordinate (diffeomorphism) symmetries.

Tµµ = 0, ∇µTµν 6= 0 OR Tµµ 6= 0, ∇µTµν = 0

I For a chiral theory, both conformal and general coordinate invariances
are broken

Tµµ 6= 0, ∇µTµν 6= 0

I As in the gauge theory, here also there are covariant and consistent
expressions for the diffeomorphism anomaly.
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Anomalous Ward identities

I Diffeomorphism anomaly:

∇νT νµ = Fµν J
ν + Cg ε̄

µν∇νR,

I Conformal anomaly:

Tµµ = CwR,

I Gauge anomaly:

∇µJµ = Csε̄
µνFµν .

Follows from purely algebraic arguments. Jµ, Tµν are covariant

current/stress tensor, R is the Ricci scalar, Fµν = ∇µAν −∇νAµ is

field strength
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General set up(1+1 dimensional static space-time)

I Metric:

ds2 = −e2σ(r)dt2 + g11(r)dr2

I Null Coordinates: u = t− r∗, v = t+ r∗

dr

dr∗
= − eσ
√
g11

I New form of metric

ds2 = −1

2
e2σ (dudv + dvdu)

I Notation: g = detgµν = − e
4σ

4

I Antisymmetric tensor:

ε̄µν =
√
−gεµν =

e2σ

2
εµν

εuv = −εvu = 1
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Passage to hydrodynamics

I Introduce the velocity uµ of the time independent equilibrium fluid
fields, satisfying uµuµ = − 1 (comoving frame)

uµ = e−σ(r)(1, 0), uµ = − eσ(r)(1, 0), (µ = t, r)

I Null Coordinates

uµ = −e
σ(r)

2
(1, 1), uµ = e−σ(r)(1, 1), (µ = u, v)

I Dual vector

ũµ = ε̄µνu
µ =

eσ(r)

2
(1,−1)

ũµ = e−σ(r)(1,−1), (µ = u, v)

normalised as ũµũµ = 1

I Chiral vector

ucµ = uµ − ũµ = −ε̄µνuνc
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ucµ = uµ − ũµ = −ε̄µνuνc

16 / 24



Passage to hydrodynamics

I Introduce the velocity uµ of the time independent equilibrium fluid
fields, satisfying uµuµ = − 1 (comoving frame)

uµ = e−σ(r)(1, 0), uµ = − eσ(r)(1, 0), (µ = t, r)

I Null Coordinates

uµ = −e
σ(r)

2
(1, 1), uµ = e−σ(r)(1, 1), (µ = u, v)

I Dual vector
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Passage to hydrodynamics

I Chemical potential

µ = At(r)/
√
−g00 = At(r)e

−σ

I U(1) gauge field

Aµ = (At(r), 0)

I Temperature

T = T0e
−σ

where T0 is the equilibrium temperature

I Ricci scalar

R =
1

g211
(g

′
11σ
′ − 2g11σ

′2 − 2g11σ
′′

) = −2uµ∇ν∇µuν
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Constitutive relations

I Energy-momentum Tensor:

Tµν =
[
C1T

2 − Cw
(
uα∇β∇βuα

)
+ µ2

(
1
2π
− Cs

)]
gµν

+
[
2Cw

(
uα∇β − uβ∇α

)
∇αuβ + 2C1T

2 + 2µ2
(

1
2π
− Cs

)]
uµuν

−
[
2Cg

(
uα∇β − uβ∇α

)
∇αuβ + C2T

2 + Csµ
2
]

(uµũν + ũµuν)

+
{(

C
π
− 2(C + P )Cs

)
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C2+P2
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(2uµuν + gµν)
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P
π
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Derivative expansion approach

I Covariant stress tensor

Tµν = εuµuν + Pũµũν + θ (ũµuν + uµũν)

I General form of a symmetric second rank tensor constructed from uµ
and ũµ.

ε = C1T
2 + Cw (uν∇µ∇µuν) + 2Cw (uµ∇ν − uν∇µ)∇µuν

P = C1T
2 − Cw (uν∇µ∇µuν)

θ = −C2T
2 − 2Cg (uµ∇ν − uν∇µ)∇µuν

I C1 and C2 are undetermined parameters expressed in terms of the
normalisation factors (Cw, Cg) of the trace/diffeomorphism anomalies.
Non-trivial relations,

C1 = 4π2Cw, C2 = 8π2Cg
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Israel-Hartle-Hawking condition

I Defined by taking Tµν/Jµ in Kruskal coordinates, corresponding to
both outgoing and ingoing modes, as regular, near the horizon.

I Implies Tuu, Tvv, Ju, Jv → 0 near the horizon

I Horizon (r = r0) defined as e2σ|r0 = 1
g11
|r0 = 0

I Fixes all the undetermined constants:

C and P fixed from Ju, Jv → 0

For Ju → 0, P − C = µeσ|r0 = 0

For Jv → 0, P + C = −µeσ|r0 = 0

P=C=0;

I C1 and C2 fixed from the condition on stress tensor.

C1 = 4π2Cw, C2 = 8π2Cg,
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Response parameters and anomaly coefficients

I

Jµ = −2Csµ(uµ + ũµ) +
µ

π
uµ

I In the hydrodynamic expansion approach

Jµ = −2Csµũµ +
(∂P
∂µ
− a′2
T 2
S2 +

a2
T
S4

)
uµ

I s2, s4 are certain combinations of gauge field that occur in the second
order expansion, and,

P = T 2p0( µ
T

)

I Comparison yields

∂P

∂µ
= T 2 ∂p0

∂µ
=

(
−2Cs +

1

π

)
µ; a2 = a′2 = 0
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Final Expressions

I

p0 =

(
1

π
− Cs

)
µ2

T 2
+Q(int.const)

I In the absence of gauge field

p0 = C1 = 4π2Cw

I General solution:

p0 = 4π2Cw +
(
1
π
− Cs

)
µ2

T2

The other relation is unchanged,

I C2 = 8π2Cg

I Consistency check

The constitutive relation for Tµν agrees with the form obtained by the
derivative expansion provided the above identifications are used.
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Conclusions

I Hydrodynamics governed by its eq. of motion (Conservation laws)
supplemented by constitutive relations expressing stress tensor/charge
in terms of fluid variables like velocity,temperature etc.

I Anomalous conservation laws modify such constitutive relations.

I Usual approach employs the gradient expansion scheme. Yields results
in two/four dimensions etc.

I In d=2, exact results are obtained since the metric is conformally flat.

I We have given exact constitutive relations in d=2 in the presence of
both gauge and gravitational anomalies. Also, the connection between
response parameters and anomaly coefficients was given.

I Apart from providing an alternative viewpoint, we have given new
results in the context of simultaneous gauge and gravitational
anomalies.

I Only covariant anomalies were used.
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Thank You
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